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Abstract

The thesis at hand aims to study the de Rham cohomology of smooth surfaces and
present a proof of a duality result, dating from 1895, due to H. Poincaré, namely, the
Poincaré Duality Theorem. We also look into some applications of such duality involving
the Euler-Poincaré characteristic and the signature of compact surfaces, and discuss its
connections to the Hodge decomposition theorem. In order to do so, we develop some
preliminary tools by providing an overview of basic concepts in the language of categories
and functors, homological algebra and differential forms on surfaces in Euclidean spaces.

José Túlio Vińıcius Prado Cruz
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Resumo

A presente monografia tem por objetivo estudar a cohomologia de de Rham para su-
perf́ıcies diferenciáveis e apresentar uma prova de um resultado de dualidade, datado
de 1895, devido a H. Poincaré, a saber, o Teorema de Dualidade de Poincaré. Também
examinamos algumas aplicações de tal dualidade, que envolvem a caracteŕıstica de Euler-
Poincaré e a assinatura de superf́ıcies compactas, e discutimos ainda sua conexão com
o teorema de decomposição de Hodge. Para isso, desenvolvemos algumas ferramentas
preliminares fornecendo uma visão geral de conceitos básicos da linguagem de categorias
e functores, álgebra homológica e formas diferenciais em superf́ıcies nos espaços Euclidi-
anos.

José Túlio Vińıcius Prado Cruz
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Introduction

J’espère qu’il sera utile à quelques-uns
sans être nuisible à personne

Discours de la méthode
Descartes

The concept of duality is surely ubiquitous in mathematics, yet there is no precise
definition of such term that encompasses all instances in which it is used. One encounters
it while studying the language of sets by learning that the complement of a union is the
intersection of complements, or even during a first course in linear algebra when one
learns that a finite-dimensional vector space is linearly isomorphic to its dual and bi-
dual spaces.

The result chosen to be studied in this thesis possesses a duality nature, namely,
the famous Duality Theorem of H. Poincaré (1854-1912), dating from 1895. However,
the context adressed here is not as broad as the one in which Poincaré was working
at the time. More precisely, we prove (following [7, 12]) his duality result for the de
Rham cohomology of differentiable surfaces in Euclidean spaces (Theorem 3.17), explore
some of its applications and discuss its connection to Hodge theory. In order to do so,
the preliminary key concepts such as cohomology and differentiable surfaces shall be
properly introduced and studied.

Let us dive into an informal description of the key topics to be treated here, so that
it can shed some light on Poincaré’s theorem.

Roughly speaking, a (differentiable) surface of dimension m is a set sitting in some
ambient space Rn (n ≥ m) that locally resembles the Euclidean space Rm, in the sense
that it can be “built” by gluing together, with sufficient regularity, pieces of Rm. For
instance, considering only spacial coordinates, the Earth (assumed to be a spherical shell)
and its equator are, respectively, surfaces of dimensions 2 and 1 in R3.

Recall from your calculus classes that a (smooth) vector field F : U → R2, where
U ⊆ R2 is an open set (which is a 2-dimensional surface in R2), is said to be irrotational
if rotF = 0 and conservative if there is a function f : U → R such that F = grad f . Very
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2 Introduction

well, the vector field

F (x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
,

defined on U = R2 − {(0, 0)} is irrotational, but not conservative, since
∮
S1 F ̸= 0.

Now, the linear space of (smooth) vector fields on U has two important linear sub-
spaces, one of which consisting of all irrotational fields and the other of conservative
fields. Additionally, every conservative field is irrotational. Thus, in order to facilitate
the search for irrotational fields on U which are not conservative, we may form a new
vector space (not necessarily finite-dimensional) by declaring that two irrotational fields
are equivalent (or cohomologous) if, and only if, their difference is conservative. This is
in fact an equivalence relation on the space of irrotational fields. The resulting vector
space of cohomology classes

(0.1) H1(U) :=
{irrotational fields}
{conservative fields}

is called the 1st de Rham cohomology group of U . Note that H1(U) = {0} if, and only
if, every irrotational field is conservative. Since the vector field F described above is
irrotational, but not conservative, it follows that H1(U) is non-trivial.

A known result from calculus is that, on simply connected open sets, every irrotational
field is conservative. Thus, even if we couldn’t exhibit the field F explicitly, the fact that
H1(U) ̸= {0} tells us that U = R2 − {(0, 0)} is not simply connected, which is fairly
intuitive, since closed paths in U surrounding the origin cannot be contracted to a point
in U without going through the origin.

Going back to (0.1) one may restrict his attention to irrotational and conservative
fields vanishing outside a compact subset of U . The resulting quotient space

H1
c (U) :=

{irrotational fields with compact support}
{conservative fields with compact support}

is called 1st de Rham cohomology group with compact support. (Note that, if U was
a compact set, then every vector field on U would be compactly supported, whence
H1(U) = H1

c (U).)

In this particular case, the Poincaré duality theorem asserts that each cohomology
class of irrotational fields on U corresponds to an unique linear functional on cohomology
classes of compactly supported irrotational fields on U . Put precisely: there is a linear
isomorphism

H1(U) ≈ (H1
c (U))∗ .

More generally, in order to obtain topological information about smooth surfaces,
one introduces the de Rham cohomology, which is a way of assigning to each surface a
sequence of real vector spaces, which are constructed through a similar process as the one
described for H1(U) and H1

c (U). However, the machinery of differential forms needs to
be developed, since such objects work better in higher dimensions than vector fields. In
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this general context, Poincaré’s theorem states that, if M is an oriented m-dimensional
surface and 0 ≤ r ≤ m, then

Hr(M) ≈ (Hm−r
c (M))∗ ,

where this isomorphism is given by the map

DM : Hr(M) → (Hm−r
c (M))∗ ,

where

DM [α] · [β] =
∫
M
α ∧β

for [α] ∈ Hr(M) and [β] ∈ Hm−r
c (M). All of this will be made precise throughout the

text.

The decision to study the Poincaré duality theorem in this thesis was made mainly
because the author was (and still is) interested in studying topics lying at the intersection
of analysis, algebra and topology. Also, it is expected that this work be of use to any
undergraduate student interested in said topics.

The overall prerequisites for reading the monograph at hand are: a solid course in
undergraduate algebra, an undergraduate course in analysis on Rn, some basic notions
of general topology and some basic multilinear algebra over finite-dimensional real vector
spaces. The work is structured as follows.

The first two chapters set the algebraic and analytic preliminaries for Chapter 3,
which contains the main results. The first chapter begins with a brief exposition of some
basic notions in the language of categories, e.g., categories, functors and natural trans-
formations. In § 1.2 the cohomology groups and the cohomology functor are introduced.
Finally, the chapter finishes with § 1.3 in which exact sequences are introduced, some
properties of the Hom functor are discussed and important results regarding exact se-
quences and cohomology are proved, e.g., the Mayer-Vietoris Theorem and the Five
Lemma.

The second chapter aims to define differential forms, integration of forms on surfaces
and study the necessary results regarding such concepts. It begins with § 2.1, which
contains the definition of surfaces in Euclidean spaces (with and without boundary),
orientability, homotopy and partitions of unity. Next, § 2.2 introduces differential forms
on surfaces and other concepts surrounding it, e.g., the pullback of forms and the exterior
derivative. Finally, in § 2.3, the integral calculus on surfaces is introduced; some useful
properties of integrals are discussed and Stokes’ Theorem is stated.

The final chapter puts together the subjects developed in the first two chapters in
order to present a proof of the Poincaré duality theorem for smooth surfaces (Theorem
3.17) and discuss some applications involving the Euler-Poincaré characteristic. It starts
off with the definition of the de Rham complex in § 3.1. Some results regarding the de
Rham cohomology are proved, e.g., Poincaré’s Lemma (Theorem 3.3) and the homotopy
invariance property. Next, in § 3.2, the de Rham cohomology with compact support is
introduced and some crucial results regarding such cohomology are discussed. Lastly,
§ 3.3 is entirely devoted to the proof of Poincaré duality, which was broken into several
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lemmas. The chapter ends with a section (§ 3.4) presenting some applications of said
duality.

Appendix A consists of various results used at some point throughout the text. Some
of these results have been proved and some have been stated without a proof.



Chapter 1

Homological Algebra

This chapter begins with a brief introduction to the language of categories, following [14].
Right after, we give an overview of homology and cohomology in a more general setting,
also following [14]. The last section was based on [7, 14] and it deals with exactness
and the Mayer-Vietoris exact sequence. The only prerequisite for this chapter is a basic
course in abstract algebra. Throughout the text, unless otherwise stated, all
rings considered are nonzero commutative rings with identity and no nonzero
divisors. In particular, during this chapter, R denotes such a ring.

1.1. Categories and Functors

Some of the main preliminary notions about categories used throughout the text will be
given during this section. We begin with the concept of category.

A category C consists of

1. a class of objects;

2. for every two objects X and Y , a set Mor(X,Y ) (also denoted MorC (X,Y )) of
morphisms, enjoying the following properties:
a) For every ordered triple of objects X,Y, Z of C , there exists a function of

sets assigning to a pair of morphisms f ∈ Mor(X,Y ) and g ∈ Mor(Y, Z) a
morphism gf ∈ Mor(X,Z), called composite morphism.

b) For every object X, there is at least one morphism 1X ∈ Mor(X,X), called
the identity morphism, such that, for every f ∈ Mor(X,Y ),

1Y f = f and f1X = f .

c) If f ∈ Mor(X,Y ), g ∈ Mor(Y, Z) and h ∈ Mor(Z,W ), then

h(gf) = (hg)f .

5



6 1. Homological Algebra

Remark 1.1. Note that in the definition above the term “class” is used instead of “set”.
We will not digress into the difference between classes and sets; this can be found in books
on axiomatic set theory. The bottom line is that not every class is a set, e.g., there is no
set of all sets1, but there is a class of sets.

It is common (and this is what we will do) to specify a category by its objects and
morphisms. For instance, the category of sets and functions of sets; the category groups
and group homomorphisms; the category of R-modules and R-module homomorphisms;
the category of topological spaces and continuous maps.

We usually denote morphisms f ∈ Mor(X,Y ) by

f : X → Y and X
f−→ Y .

Note that the identity morphism is unique. This follows from b) and c).

We say that a morphism g : Y → X is a left inverse of f : X → Y if gf : X → X is the
identity morphism 1X . Analogously, a morphism h : Y → X is said to be a right inverse
of f when fh : Y → Y is the identity morphism 1Y . In case h and g are, respectively,
right and left inverses of f , we have g = h.

By an inverse morphism of f : X → Y , we mean a morphism f ′ : Y → X which is a
left and right inverse of f . We say that f is an isomorphism in C (the objects X and Y
are said to be isomorphic in C ), and write X ≈ Y , if there exists such a morphism f ′.
Note that every morphism f having a left and a right inverse is an isomorphism, since
both inverses coincide. In this case we donoted the (unique) inverse morphism by f−1.

Objects we will frequently deal with are commutative diagrams. A diagram consists
of pictorial concatenations of morphisms in a category representing compositions (when
they make sense) as the one below.

X Y U

Z W V

f g

h i

j

A diagram as the one above is said to commute if any two paths in the diagram
chosen to be traversed by means of composition of morphisms, beginning and ending at
the same objects, give the same result. For instance, if the diagram above is commutative,
then igf = jhf .

Let C be a category. A subcategory D of C is a category enjoying the following
properties.

1. Objects of D are also objects of C .

2. MorD(X,Y ) ⊆ MorC (X,Y ) whenever X and Y are objects of D .

3. The composite of two morphisms f ∈ MorD(X,Y ) and g ∈ MorD(Y, Z) in D
equals their composite in C .

1The existence of such set leads to Russell’s paradox.
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The category of sets and bijections is a subcategory of the category of sets and
functions, but it is not a full subcategory, since not every function is a bijection. If the
equality holds in item 2., we say that D is a full subcategory of C . An example of full
subcategory of the category of sets an functions is the one consisting of finite sets and
functions. Also, the category of abelian groups and homomorphisms is a full subcategory
of the category of groups.

Two useful types of objects in a category are initial and final objects. They help in
the generalization of cartesian products and direct sums to the context of categories.
They are defined as follows.

An object I in a category C is said to be intial in C if for every object X in C
there exists only one morphism in Mor(I,X). Any two initial objects in a category are
isomorphic. Indeed, if I and I ′ are initial in C , then Mor(I, I) = {1I}, Mor(I ′, I ′) = {1I′},
Mor(I, I ′) = {f} and Mor(I ′, I) = {g}. Thus gf = 1I and fg = 1I′ .

Example 1.2. In the category of commutative rings and ring homomorphisms, Z is
an example of an initial object. During a first course in abstract algebra we learn that,
for every ring R, there exists a unique ring homomorphism from f : Z → R, namely,
f(n) = 1R + · · ·+ 1R (n-times).

Similarly, we say that an object F is final in C if, for every object X, the set
Mor(X,F ) is a singleton. Note that any two final objects in a category are isomorphic.

Example 1.3. Singletons are examples of final objects in the category of sets and func-
tions. The subcategory of sets and bijections does not admit intial nor final objects.

Let us fix a family of objects (Yn)n∈L in a category C . We then produce a new category
S (Yn)n∈L whose objects are families of morphisms having the same range (fn : Yn →
Z)n∈L and whose morphisms from an object (fn : Yn → Z)n∈L to (f ′n : Yn → Z ′)n∈L is
a morphism h : Z → Z ′ such that hfn = f ′n for every n ∈ L. The sum (or coproduct) of
the family (Yn)n∈L is an initial object in S (Yn)n∈L and is denoted by⊕

n∈L
Yn .

Bottom line: the sum of (Yn)n∈L in C consists of an object
⊕

n∈L Yn of C together
with a family of morphisms (ik : Yk →

⊕
Yn)k∈L (called inclusions) such that, for any

other family (f ′k : Yk → Z ′)k∈L, there exists an unique morphism h :
⊕
Yn → Z ′ making

the diagram below commute for each k ∈ L.⊕
Yn

Yk

Z ′

∃!h

ik

f ′k
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Example 1.4. The disjoint union of sets
⋃
n Yn×{n} together with the inclusion maps

ik : y 7→ (y, k) is a coproduct in the category of sets and functions. Also, the directs sum
of R-modules and the direct sum of abelian groups are examples of coproducts. (See [1].)

Remark 1.5. The standard notation for coproducts is
∐
Yn, yet we shall use

⊕
Yn since

it fits the context better.

In a similar fashion, we produce a new category P(Yn)n∈L whose objects are families
of morphisms having the same domain (gn : Z → Yn)n∈L and whose morphisms from
an object (gn : Z → Yn)n∈L to (g′n : Z ′ → Yn)n∈L is a morphism h : Z → Z ′ such
that gn = g′nh for every n ∈ L. The product of the family (Yn)n∈L is a final object in
P(Yn)n∈L and is denoted by ∏

n∈L
Yn .

In other words, the product of (Yn)n∈L in C consists of an object
∏
n∈L Yn of C

together with a family of morphisms (pk :
∏
Yn → Yk)k∈L (called projections) such that,

for any other family (g′k : Z ′ → Yk)k∈L, there exists an unique morphism h : Z ′ →
∏
Yn

making the diagram below commute for each k ∈ L.

Z ′

Yk

∏
Yn

g′k

∃!h

pk

Example 1.6. The cartesian product of sets together with the usual projections is a
product in the category of sets and functions. Also, the direct product of groups and the
direct product of R-modules are examples of products in their respective categories. (See
[1].)

1.1.1. Functors

To conclude this section we define “maps” between categories, called functors.

A covariant functor (resp.contravariant) T between two categories C and D consists
of an object function which assings to every object X of C an object T (X) of D and
a morphism function assigning to every morphism f : X → Y of C a morphism T (f) :
T (X) → T (Y ) (resp. T (f) : T (Y ) → T (X)) of D such that

1. T (1X) = 1T (X)

2. T (fg) = T (f)T (g) (resp. T (fg) = T (g)(f)).

We say that covariant functors act on morphisms by preserving the arrows and that
contravariant ones act by reversing the arrows.

Example 1.7. Let C be a category. The covariant functor 1C assigning each object X
to itself and each morphism f : X → Y to itself is called identity functor.
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Example 1.8. There is covariant functor from the category of groups to the category
of sets which maps each group to its underlying set and each group homomorphism to
its underlying set-function. This functor is called forgetful, since objects and morphisms
lose structure via such correspondence.

Example 1.9. Another useful example is the dualization functor Hom(·, R), which is
a contravariant functor from the category of R-modules to itself. It maps each module
M to its dual module Hom(M,R) and a homomorphism f : M → N to its transpose
homomorphism Hom(f,R) : Hom(N,R) → Hom(M,R). In the context vector spaces, we
usually write E∗ = Hom(E,R) and f∗ = Hom(f,R) (or f# depending on the context).

During this chapter, we will deal mostly with Hom(·, R) and the cohomology functor
H (to be defined in next section).

Functors are important tools for finding algebraic invariants since they preserve iso-
morphisms, as shown in the proposition below.

Proposition 1.1. Let T be a covariant (or contravariant) functor from a category C to
a category D . Then T maps isomorphisms in C to isomorphisms in D .

Proof. Let T be covariant. If f : X → Y is an isomorphism in C , then T applied
to ff−1 = 1Y and f−1f = 1X yields T (f)T (f−1) = 1T (Y ) and T (f−1)T (f) = 1T (X),

respectively. Thus T (f−1) = T (f)−1, which shows that T (f) is an isomorphism in D . A
similar argument can be applied to the contravariant case. Q.E.D.

If T : C → D and F : D → E , we define the composite functor FT from C → E as
follows:

1. For every object X of C , FT (X) = F (T (X)).

2. For every morphism f ∈ MorC (X,Y ), FT (f) = F (T (f)).

The next proposition is easily verified.

Proposition 1.2. The composition of contravariant and covariant functors (resp. co-
variant and contravariant) is a contravariant functor. Similarly, the composition of two
contravariant functors (resp. covariant) is a covariant functor.

Example 1.10. There is covariant functor ( · )∗∗ = Hom(Hom( · ,R),R) on the category
of finite-dimensional real vector spaces which assigns to each vector space E its double
dual E∗∗ and to each linear map A : E → F the induced linear map A∗∗ : E∗∗ → F ∗∗

given by A∗∗(ξ) = ξA∗. This is called the double dual functor.

If functors are maps between categories, we can go further and define maps between
functors, which are called natural transformations.

Let T1 and T2 be two covariant functors from a category C to a category D . A
natural transformation φ between T1 and T2 consists of a function from the objects of C
to morphisms of D which assigns to each object X a morphism φ(X) : T1(X) → T2(X)
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such that, for every morphism f : X → Y of C , the following diagram commutes:

T1(X) T1(Y )

T2(X) T2(Y )

T1(f)

φ(X) φ(Y )

T2(X)

Example 1.11. Let C be the category of finite-dimensional real vector spaces. There
is a natrual transformation φ between the identity functor 1C (Example 1.7) and the
double dual functor (·)∗∗ (Example 1.10) which assigns to each vector space E the map
φ(E) : E → E∗∗ defined by φ(E)(v) · ξ = ξ(v) (evaluation at v). Given a linear map
A : E → F , the commutativity of the diagram

E F

E∗∗ F ∗∗

A

φ(E) φ(F )

A∗∗

follows from the definitions of φ(E) and A∗∗.

We shall derive an example of a natural transformation between cohomology functors
in § 1.3. (See Lemma 1.16.)

1.2. Cohomology

The key concept in Chapter 3 is that of cohomology group. This section aims to define
such groups and prove some crucial results concerning these groups such as Lemma 1.16
and Theorem 1.17. We begin by defining some graded structures.

A graded R-module M consists of a family of R-modulesMq indexed by the integers.2

Elements belonging to the module Mq are said to have degree q.

A morphism f : M → N of degree d between graded modules consists of a family
(fq : Mq → Nq+d)q∈Z of homomorphisms of R-modules. If f : M → N and g : N → P
are morphisms of degree d and d′, respectively, then it follows from the diagram

Mq Nq+d Pq+d+d′
fq gq+d

that the composite morphism gf has degree d + d′. Therefore, there is a category of
graded R-modules and morphisms of graded R-modules, with each morphism having
some degree d ∈ Z. This category has a subcategory of graded R-modules and morphisms
of R-modules with fixed degree 0.

2In standard literature, a graded S-module consists of an S-module N , over a graded ring S =
⊕
Sq , which

admits a direct sum decomposition of abelian groups N =
⊕
Nq such that SpNq ⊆ Np+q . However, in the sense

of our definition, if we consider R as the result of a gradation R =
⊕
Rq which is nontrivial only in degree 0, we

may view M = (Mq)q∈Z as a the module
⊕
Mq over R =

⊕
Rq .
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A graded module M is said to be finitely generated if each Mq is finitely generated
and Mq = {0} except for a finite set of indices F ⊆ Z. For a finitely generated graded
R-module, its Euler-Poincaré characteristic χ(M) is defined by

χ(M) :=
∑
q∈F

(−1)qrq(M) ,

where rq(M) = rank(Mq). We shall compute the Euler characteristc of specific graded
modules in Chapter 3.

A differential graded R-module consists of a graded R-module M together with a
morphism (of some degree d) ∂ : M → M , called differential, such that ∂ ◦ ∂ = 0, that
is, the composite

Mq−d Mq Mq+d
∂q−d ∂q

is the trival homomorphism for every q ∈ Z.

A cochain complex over a ring R is a differential graded R-module whose differential,
called coboundary operator, has degree +1. More explicitly, a cochain complex C∗ consists
of a family of R-modules (Cq)q∈Z together with family of homomorphisms (δq : Cq →
Cq+1)q∈Z such that the composite

Cq−1 Cq Cq+1δq−1 δq

is the trival homomorphism; we write C∗ = (Cq, δq)q∈Z. The elements of Cq are called
the q-cochains of the complex C∗. If Cq = {0} for all q < 0 the complex is said to be
nonnegative.

For a cochain complex C∗ we define the group of cocycles to be the graded R-module

Z(C∗) :=
(
Zq(C) = ker δq

)
q∈Z

and the group of coboundaries to be the graded R-module

B(C∗) :=
(
Bq(C∗) = im δq−1

)
q∈Z .

Elements of the group Zq(C∗) are called q-cocycles and elements of Bq(C∗) are called
q-coboundaries.

Note that Bq(C∗) ⊆ Zq(C∗) for each q ∈ Z, since δ ◦ δ = 0. This allows us to define
the cohomology group (over R) of the complex as the graded R-module

H(C∗) :=
(
Hq(C∗) = Zq(C∗)/Bq(C∗)

)
q∈Z .

We call Hq(C∗) the q-th cohomology group (or q-dimensional cohomology group)
of the complex C∗. An element [z] ∈ Hq(C∗) is called qth cohomology class of z ∈
Zq(C∗). Two q-cocycles z and z′ are said to be cohomologous if they belong to the same
cohomology class; this means they differ by a coboundary.

Let C∗ be a cochain complex. In case the cohomology module H(C∗) is finitely
generated, the numbers bq(C

∗) = rank(Hq(C∗)) are called the Betti numbers of C∗. In
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Chapter 3, we shall relate, via Poincaré dualilty, Betti numbers of two special examples
of cochain complexs.

By a cochain map (or cochain transformation) between cochain complexes we mean a
morphism of graded R-modules f : C∗ → C̄∗ of degree 0 commuting with the differentials,
that is, commutativity holds in each square

Cq Cq+1

C̄q C̄q+1

δ̄q

fq fq−1

δ̄q

Therefore, there is a category of cochain complexes (over R) whose objects are cochain
complexes over R and whose morphisms are cochain maps.

Remark 1.12. When it comes cochain maps, the usual notation in the literature is f q

instead of fq. Nevertheless, we will keep using subscripts so that the notation gets lighter
during Chapter 3.

From the commutative rectangle

Cq−1 Cq Cq+1

C̄q−1 C̄q C̄q+1

δq−1

fq+1

δq

fq fq−1

δ̄q−1 δ̄q

we see that, for z ∈ Zq(C∗),

δ̄q(fq(z)) = fq+1(δ
q(z)) = fq+1(0) = 0

and

fq(c) = fq(δ
q−1(z)) = δ̄q−1(fq+1(z))

for c = δq−1(z) ∈ Bq(C∗). This means that, for each q, the homomorphism fq : C
q → C̄q

maps q-cocycles of C to q-cocycles of C̄ and q-coboundaries of C to q-coboundaries of C̄.
Thus, each fq induces (Theorem A.5) a homomorphism f ′q : H

q(C∗) → Hq(C̄∗) between
homology groups, given by f ′q([z]) = [fq(z)] for z ∈ Zq(C∗). This shows that a cochain

map f : C∗ → C̄∗ induces a morphism

f∗ : H(C∗) → H(C̄∗)

of degree 0 between the respective cohomology groups, where f∗q = (f∗)q = f ′q.

Given two cochain maps f : C∗ → C̄∗ and g : C̄∗ → C̃∗, we have (gqfq)
∗ = (gq)

∗(fq)
∗,

whence (gf)∗ = g∗f∗. It then follows that there exists a covariant functor, called coho-
mology functor, from the category of cochain complexes over R and cochain maps to the
category of graded R-modules and morphisms of degree 0 which assigns to a cochain
complex C∗ its homology group H(C∗) and to a cochain map f its induced morphism
H(f) = f∗.
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Let C∗ be a cochain complex. By a subcomplex of C∗ = (Cq, δq)q∈Z we mean a
cochain complex C̄∗ = (C̄q, δ̄q)q∈Z such that C̄q ⊆ Cq, with δq(C̄q) ⊆ C̄q+1 for every q,
and δ̄q = δq|C̄q . In this case we write C̄∗ ⊆ C∗.

Example 1.13. If C̄∗, C̃∗ ⊆ C∗ are subcomplexes, then the intersections C̄q ∩ C̃q give
rise to a subcomplex of C∗, denoted by C̄∗ ∩ C̃∗. In case Cq = C̄q + C̃q for every q, we
write C∗ = C̄∗ + C̃∗; this is called a decomposition of the cochain complex C∗.

If (C∗
j )j∈J is a family of cochain complexes, we define the sum cochain complex

⊕
C∗
j

by setting (⊕
j∈J

C∗
j

)q
=

⊕
j∈J

Cqj .

Its coboundary operators δq⊕ :
⊕

j∈J C
q
j →

⊕
j∈J C

q+1
j are given by δq⊕((zj)j∈J) =

(δqj (zj))j∈J . Using the fact that
⊕

j∈J C
q
j are coproducts (sums) in the category of R-

modules one shows that
⊕
C∗
j is in fact a coproduct in the category of cochain complexes.

From the definition of δq⊕ it follows that

Zq
(⊕
j∈J

C∗
j

)
=

⊕
j∈J

Zq(C∗
j ) and Bq

(⊕
j∈J

C∗
j

)
=

⊕
j∈J

Bq(C∗
j ) ,

whence

Hq
(⊕
j∈J

C∗
j

)
=

⊕
j∈J

Hq(C∗
j )

for every q ∈ Z. Analogously, for products of cochain complexes we have

Hq
(∏
j∈J

C∗
j

)
=

∏
j∈J

Hq(C∗
j ) .

Therefore,

H
(⊕
j∈J

C∗
j

)
=

⊕
j∈J

H(C∗
j ) and H

(∏
j∈J

C∗
j

)
=

∏
j∈J

H(C∗
j ) .

Dual to the notion of cochain complex is that of a chain complex (over R). By
that we mean a differential graded R-module C∗ = (Cq)q∈Z whose differential, called
boundary operator, has degree −1, that is, C∗ consists of a family of R-modules (Cq)q∈Z
together with family of homomorphisms (∂q : Cq → Cq−1)q∈Z such that the composite

Cq+1 Cq Cq−1
∂q+1 ∂q

is the trival homomorphism. The homology group (over R) of C∗ is defined as

H(C∗) =
(
Hq(C∗) = Zq(C∗)/Bq(C∗)

)
q∈Z ,

where Zq(C∗) = ker ∂q is the group of cycles of C∗ and Zq(C∗) = im ∂q+1 is the group
of boundaries of C∗. The R-module Hq(C∗) the q-th homology group (or q-dimensional
homology group) of the complex C∗. An element [z] ∈ Hq(C∗) is called qth homology
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class of z. Two q-cycles z and z′ are said to be homologous if they belong to the same
homology class.

We shall encounter, during § 3.4, an example of chain complex in the context of
differential forms.

For chain complexes we have facts analogous to those about cochain complexes stated
above. For instance, chain map between chain complexes is a morphism of graded R-
modules f : C∗ → C̄∗ of degree 0 commuting with the differentials (in this case boundary
operators). Also, a chain map f : C∗ → C̄∗ induces a morphism of degree 0 at the
homology level. In this case we write f∗ : H(C∗) → H(C̄∗), where (f∗)q([z]) = [fq(z)].

There exists a covariant functor, called homology functor, from the category of chain
complexes over R and chain maps to the category of graded R-modules and morphisms
of degree 0 which assigns to a chain complex C∗ its homology group H(C∗) and to a
chain map f its induced morphism H(f) = f∗.

1.3. Exact Sequences

A three-term sequence of R-modules and R-module homomorphisms

C̃ C C̄
g f

is said to be exact at C when im g = ker f . In this case, it follows that f is a injective if,
and only if, g ≡ 0. Also, g is surjective if, and only if, f ≡ 0. Thus, the exactness of

0 C C̄
f

is equivalent to the injectivity of f , and the exactness of

C̃ C 0
g

is equivalent to g being onto.

A morphism of degree +1 on a graded R-module (fq : Cq → Cq+1)q∈Z is said to be an
exact sequence if every three-term subsequence of consecutive R-module homomorphisms
is exact at its middle term, i.e., the kernel of each homomorphism coincides with the
image of the preceding one. Note that (co)chain complex is exact if, and only if, its
(co)homology groups are trivial in every dimension.

There is a category of exact sequences of R-modules, with morphisms between exact
sequences (fq : Cq → Cq+1)q∈Z and (gq : C̄q → C̄q+1)q∈Z being another sequence (φq :
Cq → C̄q)q∈Z such that the diagram commutes:

· · · Cq−1 Cq Cq+1 · · ·

· · · C̄q−1 C̄q C̄q+1 · · ·

φq−1

fq−1

φq

fq

φq+1

gq−1 gq

Theorem 1.17 describes an important functor from the category of cochain complexes
to the one above.
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Applying the (contravariant) functor Hom(· , R) to a sequence of R-module homo-
morphisms

· · · Cq−1 Cq Cq+1 · · ·f fq−1 fq f

one obtains a sequence of duals, namely,

· · · Hom(Cq+1, R) Hom(Cq, R) Hom(Cq−1, R) · · ·f# f#q+1 f#q f#
,

where f#q+1 = Hom(fq, R)
3 is given by (f#q+1φ)(v) = φ(fq(v)) for v ∈ Cq. Such dualiza-

tions will be useful during § 3.2.

An exact five-term sequence of R-modules and R-module homomorphisms

(1.1) 0 C̃ C C̄ 0
f g

is called a short exact sequence. Note that a short sequence as this one is exact if, and
only if, im f = ker g, f is injective and g is surjective.

Example 1.14. Two useful examples of a short exact sequences of R-modules are those
originating from an R-module homomorphism f : C → C̄, namely,

0 ker f C f(C) 0i f

and

0 im f C̄ coker f 0 ,i π

where coker g = C̄/ im f .

A short exact sequence of R-modules as the one in (1.1) is said to be split if g has

a right inverse. In this case, there is an isomorphism C ≈ C̃ ⊕ C̄. For a proof, see [14,
p. 217].

Example 1.15. In the context of vector spaces (R-modules) every short exact splits;
this fact will prove useful during § 3.1. It follows from a more general fact: every short
exact sequence of R-modules (as the one in (1.1)) splits whenever C̄ is free. Indeed, given
a basis (c̄i)i∈I , for each i ∈ I we can choose (since g is onto) ci ∈ C so that g(ci) = c̄i.
There exists a unique homomorphism h : C̄ → C such that h(c̄i) = ci. Thus gh = 1C̄ , as
we wanted to show.

Proposition 1.3. Let R be a field. The contravariant functor Hom(·, R) on the category
of R-modules to itself is exact. In particular, if the sequence

C̃ C C̄

is exact, then the same holds for the dual sequence

Hom(C̄, R) Hom(C,R) Hom(C̃, R) .

3To simplify notation, when we apply Hom(· , R) to an R-module homomorphism f we will write f# instead

of Hom(f ,R). We will also write C∗ = Hom(C,R) whenever it is convenient.
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Proof. When S is an arbitrary ring, the contravariant functor Hom(·, S) on the category
of S-modules is not necessarily exact. However, every short exact sequence of S-modules

0 C̃ C C̄ 0 ,i j

in which C̄ is a free module, the dual sequence

0 Hom(C̄, S) Hom(C, S) Hom(C̃, S) 0 ,
j# i#

is exact; see [7, p. 18]. Thus, in the case at hand, Hom(·, R) is exact, since every R-vector
space is a free module.

For the second part of the statement above, we use a more general argument. A
three-term exact sequence of R-modules C̃ → C → C̄ gives rise to commutative diagram

0 0 0

ker f im g

C̃ C C̄

im f coker g

0 0 0

f g

where each diagonal is a short exact sequence. Thus, if T is an exact contravariant
functor (i.e., preserves short exact sequence and reverses the arrows) on the category of
R-modules to itself, we obtain another commutative diagram

0 0 0

T (coker g) T (im f)

T (C̄) T (C) T (C̃)

T (im g) T (ker f)

0 0 0

T (f) T (g)

where the diagonals are again exact. We then conclude that

imT (f) = im(T (C̄) → T (im g) → T (C))

= im(T (im g) → T (C))

= ker(T (C) → T (im f))

= ker(T (C) → T (im f) → T (C̃))

= kerT (g) .
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Therefore, the sequence T (C̄) → T (C) → T (C̃) is exact.

Q.E.D.

Another useful property of Hom(· , R) is the following.

Proposition 1.4. Let R be a ring. If (Cq)q∈L is a family of R-modules, then

Hom
(⊕
q∈L

Cq, R
)
≈

∏
q∈L

Hom(Cq, R) .

Proof. Let ik : Ak →
⊕
Cq be the natural inclusion. It suffices to see that the R-module

homomorphism

ξ : Hom
(⊕
q∈L

Cq, R
)
−→

∏
q∈L

Hom(Cq, R)

f 7−→ (f ◦ iq)q∈L
is an isomorphism whose inverse homomorphism is∏

q∈L
Hom(Cq, R) −→Hom

(⊕
q∈L

Cq, R
)

(fq)q∈L 7−→ f :
⊕
q∈L

Cq −→ R

(cq)q∈L 7−→
∑
q∈L

fq(cq)

Q.E.D.

A short exact sequence of cochain complexes is a five-term sequence of cochain com-
plexes and cochain maps

0 C̃∗ C∗ C̄∗ 0
f g

such that, for each q ∈ Z,

0 C̃q Cq C̄q 0
fq gq

is a short exact sequence of R-modules. A morphism between short exact sequences of
cochain complexes is just a commutative diagram of cochain maps

(1.2)

0 C̃∗ C∗ C̄∗ 0

0 Ẽ∗ E∗ Ē∗ 0

φ̃

f

φ

g

φ̄

i j

There is a category of short exact sequences of cochain complexes. We define three
covariant functors H̃, H and H̄ from this category to the category of graded R-modules
which assign to each short exact sequence of cochain complexes

0 C̃∗ C∗ C̄∗ 0
f g
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the graded R-modules H(C̃∗), H(C∗) and H(C̄∗), respectively. Following this notation,
we have the result below.

Lemma 1.16. On the category of short exact sequences of cochain complexes

S : 0 C̃∗ C∗ C̄∗ 0
f g

there is a natural transformation δ∗ : H̄ → H̃ such that δ∗(S) : H(C̄∗) → H(C̃∗)

is a morphism of degree +1 and (δ∗(S))q[z̄] = [(fq+1)
−1δqg−1

q (z̄)] ∈ Hq(C̃∗) for [z̄] ∈
Hq(C̄∗).4

Proof. From the short exact sequence S we have a commutative diagram

0 C̃q+1 Cq+1 C̄q+1 0

0 C̃q Cq C̄q 0

0 C̃q−1 Cq−1 C̄q−1 0

fq+1 gq+1

δ̃q

fq

δq

gq

δ̄q

δ̃q−1

fq−1

δq−1

gq−1

δ̄q−1

where each row is a short exact sequence of R-modules. Let z̄ ∈ Zq(C̄), where z̄ = gq(c)
for some c ∈ Cq, since gq is surjective. From commutativity we have

gq+1(δ
q(c)) = δ̄q(gq(c)) = δ̄q(z̄) = 0 ,

whence δq(c) ∈ ker gq+1. Thus δ
q(c) = fq+1(c̃) for some c̃ ∈ C̃q+1. Again, commutativity

gives us

0 = δq+1(δq(c)) = δq+1(fq+1(c̃)) = fq+2(δ̃
q+1(c̃)) ,

and by the injectivity of fq+2, it follows that δq+1(c̃) = 0. Therefore, c̃ ∈ Zq+1(C̃
∗) and

c̃ = f−1
q+1(δ

q(g−1
q (z̄))). We then define δ∗(S) by (δ∗(S))q[z̄] = [c̃]. Now, to show that this

homomorphism is well defined, let w̄ ∼ z̄ = gq(c), where w̄ = gq(d) for some d ∈ Cq.
This means that gq(d) = gq(c) + δ̄q−1(ū) for some ū ∈ C̄q−1. Since gq−1 is surjective, we
have ū = gq−1(u) for some u ∈ Cq−1. Commutativity then gives

gq(d) = gq(c+ δq−1(u)) =⇒ d− (c+ δq−1(u)) ∈ ker gq .

Thus, there exists d̃ ∈ C̃q such that fq(d̃) = d−(c+δq−1(u)). Applying δq to this equality,
using δq(c) = fq+1(c̃) and commutativity, it follows that

δq(d) = fq+1(c̃+ δ̃q(d̃)) ,

where c̃ is the same as above. From this we see that f−1
q+1(δ

q(d)) = c̃ + δ̃q(d̃), that is,

f−1
q+1(δ

q(d)) ∼ c̃, whence f−1
q+1(δ

q(g−1
q (w̄))) ∼ c̃, as we wanted. Lastly we show that S 7→

δ∗(S) is a natural trasnformation. Consider a morphism between short exact sequences

4When it is clear from context we write (δ∗(S))q = δ∗q .
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of cochain complexes as shown in (1.2) and label the second short sequence as T . We
must show that the diagram

H(C̄∗) H(Ē∗)

H(C̃∗) H(Ẽ∗)

φ̄∗

δ∗(S) δ∗(T )

φ̃∗

commutes. Indeed, from the commutativity of (1.2) and the definition of δ∗, it follows
that

(φ̃∗)q+1(δ
∗(S))q[z̄] = (φ̃∗)q+1[f

−1
q+1δ

qg−1
q (z̄)]

= [φ̃q+1f
−1
q+1δ

qg−1
q (z̄)]

= [i−1
q+1φq+1δ

qg−1
q (z̄)]

= [i−1
q+1δ

qφqg
−1
q (z̄)]

= [i−1
q+1δ

qj−1
q φ̄q(z̄)]

= (δ∗(T ))q(φ̄
∗)q[z̄] ,

where δ in the fourth and fifith lines denotes the coboundary operator of E∗.

Q.E.D.

The lemma above tells us that the connecting morphism δ∗ allows one to pass from a
short exact sequence of cochain complexes to a sequence at the cohomology level, namely,

· · · Hq(C̃∗) Hq(C∗) Hq(C̄∗) Hq+1(C̃∗) · · ·
δ∗q−1 f∗q g∗q δ∗q f∗q+1

In the next theorem we see that this cohomology sequence is actually exact and that
such correspondence extends to a functor, that is, the cohomology sequence is functorial
on short exact sequences.

Theorem 1.17 (Mayer-Vietoris). There is a covariant functor from the category short
exact sequence of cochain complexes to the category of exact sequences of R-modules
which assings to a short exact sequence

0 C̃∗ C∗ C̄∗ 0
f g

the sequence

· · · Hq(C̃∗) Hq(C∗) Hq(C̄∗) Hq+1(C̃∗) · · ·
δ∗q−1 f∗q g∗q δ∗q f∗q+1

Proof. From the naturality of δ∗, established in Lemma 1.16, it follows that each mor-
phism between short exact sequences of cochain complexes is assigned to a morphism
between the correponding cohomology sequences. Thus, we only need to show that such
a sequence is exact, that is, we must prove exactness at Hq(C̃∗), Hq(C∗) and Hq(C̄∗).
We will do so only at Hq(C̄∗). It is easy to see that im g∗q ⊆ ker δ∗q :

δ∗q (g
∗
q [z]) = δ∗q [gq(z)] = [f−1

q+1δ
qg−1
q (gq(z))] = [f−1

q+1δ
q(z)] = [f−1

q+1(0)] = [0] .
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Now, to show that ker δ∗q ⊆ im g∗q , let [z̄] ∈ ker δ∗q , where z̄ ∈ Zq(C̄∗), and consider the
commutative diagram in the proof of Lemma 1.16. We have z̄ = gq(c) for some c ∈ Cq

and [0] = δ∗q [z̄] = [f−1
q+1δ

qg−1
q (gq(c))], whence f

−1
q+1δ

q(c) = δ̃q(d̃), where d̃ ∈ C̃q. Thus

δq(c) = fq+1δ̃
q(d̃) = δqfq(d̃)

implies c− fq(d̃) ∈ Cq. Therefore

δq(c− fq(d̃)) = δq(c)− δqfq(d̃) = δq(c)− fq+1δ̃
q(d̃) = 0 ,

whence c− fq(d̃) ∈ Zq(C∗) and [c− fq(d̃)] ∈ Hq(C∗). Finally,

g∗q [c− fq(d̃)] = [gq(c)− gqfq(d̃)] = [gq(c)] = [z̄] .

Q.E.D.

Lemma 1.16 and Theorem 1.17 have analogues, with obvious modifications, to chain
complexes and homology. (See [14, p. 181].)

Now we present an application of Theorem 1.17; similar applications will be presented
in Chapter 3. Let C∗ = C̄∗+C̃∗ be a decomposition (Example 1.13) of a cochain complex

C∗ = (Cq, δq)q∈Z. Define chain maps i : C̄∗ ∩ C̃∗ → C̄∗ ⊕ C̃∗ and j : C̄∗ ⊕ C̃∗ → C∗ by

iq(z) = (z, z) and jq(z, w) = z − w .

For each q, the homomorphism iq is clearly injective and jq is surjective. Also, it is
obvious that im(i) ⊆ ker(j). If (z, w) ∈ ker(j), then z = w, whence (z, w) ∈ im(i). We
then obtain a short exact sequence of cochain complexes

0 C̄∗ ∩ C̃∗ C̄∗ ⊕ C̃∗ C∗ 0i j

From Theorem 1.17, the resulting exact sequence in cohomology is then

· · · Hq(C̄∗ ∩ C̃∗) Hq(C̄∗)⊕Hq(C̃∗) Hq(C∗) Hq+1(C̄∗ ∩ C̃∗) · · ·∆∗ i∗ j∗ ∆∗ i∗

This exact sequence is called the Mayer-Vietoris sequence of the decomposition C∗ =
C̄∗ + C̃∗. We have

i∗q [z] = ([z], [z]) and j∗q ([z], [w]) = [z − w] .

From the definition of the natural transformation ∆∗ given in Lemma 1.16, it follows
that

∆∗
q [z] = [δq(x)] = [δq(y)] ,

where z = x− y, x ∈ C̄q, y ∈ C̃q and δq(x) = δq(y).

We end this chapter presenting yet another important result to be used later.
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Theorem 1.18 (The Five Lemma). Given a commutative diagram of R-modules and
homomorphisms

M5 M4 M3 M2 M1

N5 N4 N3 N2 N1

γ5

α5

γ4

α4

γ3

α3

γ2

α2

γ1

β5 β4 β3 β2

in which each row is an exact sequence and γ1, γ2, γ4 and γ5 are isomorphisms, then γ3
is an isomorphism.

Proof. We first prove that γ3 is injective. Let x3 ∈ M3 be such that γ3(x3) = 0. Then
the commutativity of the diagram above gives us γ2(α3(x3)) = 0, whence α3(x3) = 0.
Exactness then implies x3 = α4(x4) for some x4 ∈ M4. Thus β4(γ4(x4)) = γ3(α4(x4)) =
γ3(x3) = 0, whence γ4(x4) = β5(y5) for some y5 ∈ N5. Since γ5 is surjective, we have
y5 = γ5(x5) for some x5 ∈M5. It follows that γ4(x4) = β5(y5) = β5(γ5(x5)) = γ4(α5(x5)),
whence x4 = α5(x5). Thus

x3 = α4(x4) = α4(α5(x5)) = 0 .

Now to see that γ5 is surjective, let y3 ∈ N3. Since γ2 is surjective, we have β3(y3) = γ2(x2)
for some x2 ∈ M2. Commutativity gives γ1(α2(x2)) = β2(γ2(x2)) = β2(β3(y3)) = 0,
and we see that α2(x2) = 0, which implies x2 = α3(x3) for some x3 ∈ M3. Again by
commutativity, we have β3(γ3(x3)) = γ2(α3(x3)) = γ2(x2) = β3(y3). From this we see
that β3(y3 − γ3(x3)) = 0, and exactness implies

y3 − γ3(x3) = β4(y4)

for some y4 ∈ N4. Note that y4 = γ4(x4) for some x4 ∈ M4. Since x3 + α4(x4) ∈ M3, it
follows that

γ3(x3 + α4(x4)) = γ3(x3) + γ3(α4(x4))

= γ3(x3) + β4(γ4(x4))

= γ3(x3) + β4(y4)

= y3

Q.E.D.





Chapter 2

Differential Forms

We begin this chapter introducing the concept of a surface in Euclidean space. Right
after, we define differential forms on surfaces and discuss some of its properties. In the
last section we develop the integral calculus of forms on surfaces. Main references for this
chapter are [6, 8, 11].

2.1. Surfaces in Euclidean spaces

In this section we introduce the concept of surfaces in Euclidean spaces and go through
some other notions regarding such objects. We shall assume basic knowledge of general
topology and real analysis on Rn (e.g. integration and differentiation in the sense of
Fréchet and Stolz). Natural references for such topics are [9, 11].

Before diving into the precise definition of a surface, we need the concept of immer-
sion. By that we mean a differentiable map1 f from an open set U ⊆ Rm into Rn such
that, for every point p ∈ U , f ′(p) : Rm → Rn is an injective linear map. In this case we
see that m ≤ n by the Rank-Nullity Theorem.

A parametrization (or chart) of class Ck and dimension m of a subset X ⊆ Rn is
a homeomorphism φ : V0 → X from an open set V0 ⊆ Rm which is also an immersion
of class Ck. Given a point p ∈ X, an open neighborhood V ⊆ X of p in X is called a
parametrized neighborhood of class Ck and dimension m if it admits a parametrization of
class Ck and dimension m. In this case, we say that V is a parametrized neighborhood
of p.

With that being said, a differentiable surface of class2 Ck and dimension m in Rn (or
codimension n−m) is a subset M ⊆ Rn such that each point p ∈ M has parametrized

1Throughout the text we use the term “map” for a total functional binary relation with values on an arbitrary
set Y (not necessarily a numeric set). The term “function” will be used only in cases where Y is a numeric set,
e.g., R or C.

2Unless otherwise stated, we consider surfaces of class C1, at least.

23
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neighborhood of class Ck and dimension m (a surface that is Ck for each k ∈ N is said
to be C∞ or smooth).

More explicitly, M can be covered by a collection of open set U ⊆ Rn such that each
V = U ∩M has a parametrization φ : V0 → V of class Ck and dimension m. Intuitively,
this means that, near each point, M is a copy of the m-dimensional Euclidean space.
Note that even though n can be a very large number, the “position” of a point p ∈ V is
entirely determined by its m coordinates (a1, . . . , am) = φ−1(p).3

By taking restrictions one readily sees that each point in a surface admits arbitrally
small parametrized neighborhoods.

Remark 2.1. Henceforth, surfaces will be considered as topological spaces with the
topology induced by that of the ambient Euclidean space.

A family of Ck parametrizations φ : V0 → V ⊆ M whose images cover M is called
an atlas of class Ck for M . The concept of atlas constitutes an essential piece to the
definition of orientability, which will be given later on.

Example 2.2. If U ⊆ M is an open set of an m-dimensional surface M ⊆ Rn, then U
an m-dimensional surface belonging the same differentiability class asM . Indeed, given a
point p ∈ U , there exists a parametrization φ : V0 → V of p ∈ V = A∩M , where A ⊆ Rn

and V0 ⊆ Rm are open. Thus p ∈W ⊆ V , where W = A∩U is an open set of U . Setting
W0 = φ−1(A ∩ U) it follows that φ : W0 → W is an m-dimensional parametrization of
W ∋ p. In particular, this result holds for parametrized neighborhoods.

Example 2.3. An easy example of a surface4 is given by an open set of the n-dimensional
Euclidean space. More precisely, every open set U ⊆ Rn is a smooth (C∞) n-dimensional
surface (or a surface of codimension 0). Indeed, taking φ : U → U to be the identity
map, we see that U is a parametrized neighborhood of class C∞ and dimension n to each
point p ∈ U . Actually, every n-dimensional surface of class C1 in Rn is an open set. This
follows directly from the Inverse Mapping Theorem (Theorem A.2) and the fact that
every surface is the union of its parametrized neighborhoods. On the other hand, since
R0 = {0}, surfaces of codimension n (dimension 0) in Rn are precisely the discrete sets.

3There is a far more general concept than that of a surface, namely, a smooth manifold. Roughly speaking,

it is a sufficiently good (depending on the context) topological space together with parametrizations such as the
ones defined above in such a way the one can pass “smoothly” between intersecting charts. We usually say that
manifolds are defined intrinsically, since they need not be subsets of some Euclidean space. There is a theorem
due to Hassler Whitney (1907-1989) which states that every smooth manifold can be thought of as a surface in

some Euclidean space. For further details, see [6].
4Note that according our definition the empty set is a surface itself.
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Example 2.4. The cartesian product of two surfaces M1 ⊆ Rn1 and M2 ⊆ Rn2 , where
dimM1 = m1 and dimM2 = m2, is a surface of dimension m1 +m2. Indeed, given two
parametrizations φ : V0 → V ⊆M1 and ψ :W0 →W ⊆M2, the map ζ : V0×W0 → V ×
W defined by ζ(u0, v0) = (φ(u0), ψ(v0)) is a parametrization of class Ck and dimension
m1 +m2. Thus the product of a finite number of surfaces is still a surface. For instance,
since the unit circle S1 is a smooth 1-dimensional surface5 in R2, we see that the torus
Tn = S1 × · · · × S1 is an n-dimensional in R2n.

Example 2.5. A topological space is said to be locally compact if each point lies in a
compact neighborhood. Every surface is a locally compact space. Indeed, given a point
x ∈ M , there exists an open neighborhood V ∋ x and a homeomorphism φ : V0 → V ,
where V0 ⊆ Rm is an open set and φ(a) = x. There is then a closed (compact) ball B
centered at a with B ⊆ V0. Thus the map φ restricts to a homeomorphism φ : B → φ(B),
whence φ(B) ⊆ V is compact and x ∈ intφ(B), as we wanted to prove.

Example 2.6. A topological space X is said to be locally connected when, given x ∈ X,
each neighborhood U ∋ x contains a connected neighborhood V ∋ x. The connected
components of a locally connected space are open.6 From the fact that each parametriza-
tion φ : V0 → V ⊆ M is a homeomorphism, one readily sees that every surface is a
locally connected topological space. Therefore, every connected component of a surface
M is an open set of M .

If φ : V0 → V ⊆ Rn is a Ck parametrization, the set V might not be open, thus
we cannot state anything for sure on the differentiability of φ. At any rate, there is the
following important theorem. For a proof see [11, p. 246].

Theorem 2.7. Let M ⊆ Rn be an m-dimensional surface of class Ck and f : U → Rn

a Ck map (resp. differentiable at a ∈ U), defined on an open set U ⊆ Rp. If f(U) ⊆ V ,
where V ⊆M is the image of a Ck parametrization φ : V0 → V , then the composite map
φ−1 ◦ f : U → Rm is also Ck (resp. differentiable at a).

V

U V0

f

φ−1◦f

φ

Furthermore, for a ∈ U and b = (φ−1 ◦ f)(a),

(φ−1 ◦ f)′(a) = [φ′(b)]−1 · f ′(a) : Rp → Rm.

The previous theorem has the following consequences: the definition of tangent space
to a surface at a point, change of coordinates between parametrizations and the gener-
alization of differentiability to maps between surfaces. Let us begin with the first one.

5To see this, use two smooth parametrizations to cover S1, one of which is the inverse of stereographic

projection from the north pole and the other is is the inverse of stereographic projection from the south pole.
6See [9, p. 96].
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Let M ⊆ Rn be a surface of class Ck and dimension m. We define the tangent space
to M at a point p ∈M as the m-dimensional linear subspace

TpM = φ′(a) ·Rm ⊆ Rn ,

where φ : V0 → V is a Ck parametrization of an open neighborhood V ∋ p in M .

One can also define the tangent space TpM as the set of all tangent vectors λ′(0),
where λ : ]− ε, ε[→M is a differentiable path at 0 with λ(0) = p. These two definitions
are in fact equivalent since they define the same set. We skip the details, which can be
found in [11, p. 247].

Since parametrizations are immersions, from the first definition of tangent space it
folllows that each parametrization φ : V0 → V determines a basis for TpM , namely,

Bφ =

{
∂φ

∂x1
= φ′(a) · e1, . . . ,

∂φ

∂xm
= φ′(a) · em

}
.

Note that a parametrized neighborhood φ : V0 → V = U ∩M of an m-dimensional
surface is an m-dimensional surface that can be covered by a single parametrization,
namely, φ : V0 → V . Therefore, for every x ∈ V , we have

TxV = TxM .

This fact will prove useful in the next section, since it allows one to define the exterior
derivative of forms.

Moreover, if M and N are surfaces of dimensions m and n, respectively, such that
M ⊆ N ⊆ Rp, then

TxM ⊆ TxN .

Indeed, let ψ : U0 → U ⊆ N and φ : V0 → V ⊆M be parametrizations for neighborhoods
U ∋ x and V ∋ x, respectively, such that x = φ(v) = ψ(u). The restriction ψ : ψ−1(U ∩
V ) → U∩V is yet another parametrization of U∩V ∋ x inM . Thus, Theorem 2.7 applied
to ψ = φ ◦ (φ−1 ◦ ψ) : ψ−1(U ∩ V ) → φ−1(U ∩ V ) gives ψ′(u) = φ′(v) ◦ (φ−1 ◦ ψ)′(u).
Therefore, if z = ψ′(u) · u0 for some u0 ∈ Rn, then z = φ′(v) · v0, where v0 = (φ−1 ◦
ψ)′(u) · u0 ∈ Rm. This shows that TxM ⊆ TxN .

As to the second consequence of Theorem 2.7, it says that any two m-dimensinal
parametrizations of the same neighborhood “differ” by a diffeomorphism. This is the
content of the next theorem.

Theorem 2.8. Let ψ :W0 → V ⊆ Rn be an m-dimensional parametrization of class Ck.
A necessary and suficient condition for a Ck-map φ : V0 → V to be a parametrization of
V is that φ = ψ ◦ ξ, where ξ : V0 → W0 is a diffeomorphism of class Ck. In particular,
φ is an m-dimensional parametrization.

V

V0 W0

φ

ξ

ψ



2.1. Surfaces in Euclidean spaces 27

Proof. Clearly the above condition is sufficient. To see that it is also necessary, let
φ : V0 → V to be a parametrization of V . It follows from Theorem 2.7 that

ξ = ψ−1 ◦ φ : Vo →W0 and ξ−1 : φ−1 ◦ ψ :W0 → V0

are Ck maps, whence Ck diffeomorphisms with φ = ψ ◦ ξ.
Q.E.D.

Using this last result, one can make sense of a change of coordinates for points lying
on the intersection of two parametrized neighborhoods. This is what we will do now. Let
φ : V0 → V and ψ : W0 → W be parametrizations of two neighborhoods V,W ⊆ M
with V ∩W ̸= ∅. Given a point p = φ(a) = ψ(b) ∈ V ∩W , we have two bases for TpM ,
namely,

Bφ(a) =

{
∂φ

∂x1
(a), . . . ,

∂φ

∂xm
(a)

}
and Bψ(b) =

{
∂ψ

∂y1
(b), . . . ,

∂ψ

∂ym
(b)

}
.

In order to determine the change of basis matrix [αij ] given by

∂φ

∂xj
(a) =

m∑
i=1

αij
∂ψ

∂yi
(b)

we apply the chain rule (Theorem A.1) to φ = ψ ◦ ξ, where ξ = ψ−1 ◦φ : φ−1(V ∩W ) →
ψ−1(V ∩W ) is a diffeomorphism (by Theorem 2.7) with ξ(x) = y. We obtain

∂φ

∂xj
(a) =

m∑
i=1

∂ψ

∂yi
(b)

∂ξi
∂xj

(a) ,

whence

αij =
∂ξi
∂xj

(a) .

This shows that change of basis matrix from Bψ to Bφ in TpM is precisely the jacobian
matrix of ξ = ψ−1 ◦ φ at a = φ−1(p).

Finally, for the last consequence of Theorem 2.7 we have the definition of differentia-
bility of maps between surfaces.

Let M ⊆ Rn an m-dimensional surface of class Ck. A map f : M → Rd is said to
be differentiable at a point p ∈ M if there exists a Ck parametrization φ : V0 → V of a
neighborhood V ∋ p such that the composite map f ◦ φ : V0 → Rd is differentiable at
a = φ−1(p).

M Rd

V0

f

φ
f◦φ

This definition does not depend on the choice of parametrized neighborhoods of p. Indeed,
if ψ :W0 →W is a parametrization of a neighborhood W ∋ p, then by Theorem 2.7 and
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the identity f ◦ψ = (f ◦φ) ◦ (φ−1 ◦ψ) we see that f ◦ψ is differentiable at ψ−1(p) if and
only if f ◦ φ is differentiable at φ−1(p).

We say that f ∈ Cs (0 ≤ s ≤ k) if for each p ∈M there exists a Ck parametrization
φ : V0 → V of a neighborhood V ∋ p such that f ◦ φ ∈ Cs. Again, this does not depend
on the chosen neighborhood.

If f :M → Rd is differentiable at a point p ∈M , we define its derivative at p as the
linear map f ′(p) : TpM → Rd such that

f ′(p) · v = (f ◦ φ)′(a) · v0 ,

where φ is a parametrization of a neighborhood V ∋ p, a = φ−1(p) and v = φ′(a) · v0.
This linear map is well defined as it does not depend on the parametrized neighboord.
(See [11, p. 249].)

TpM Rd

Rm

f ′(p)

φ−1(a)
(f◦φ)′(a)

Now, if N ⊆ Rd is another surface of class Ck, we say that a map f : M → N is
differentiable at p ∈ M when the corresponding map7 f : M → Rd is differentiable in
the sense defined above.

M N Rd

V0

f i

φ
i◦f◦φ

Moreover, we say that f ∈ Cs (0 ≤ s ≤ k) when f :M → Rd is of class Cs.

In case f :M → N is a differentiable bijection such that f−1 is differentiable, we say
that f is a diffeomorphism. In this case we say that f is a diffeomorphism of class Ck if
f ∈ Ck.

Example 2.9. Let M be an m-dimensional smooth surface and φ : V0 → V a smooth
parametrization of an open set V ⊆M . Then φ is a smooth diffeomorphism between the
surfaces V0 ⊆ Rm and V .

As it was refered above, given a vector v ∈ TpM we have v = λ′(0), where λ :
] − ε, ε[→ M is a differentiable path at 0 with λ(0) = p. Thus for a differentiable map
f :M → Rd at p we see that

f ′(p) · v = (f ◦ φ)′(a) · v0 = Dv0(f ◦ φ)(a) = ((f ◦ φ) ◦ (φ−1 ◦ λ))′(0) = (f ◦ λ)′(0) ,

7More precisely, i ◦ f :M → Rd, where i : N ↪→ Rd is the inclusion.
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that is, f ′(p) ·v is a tangent vector to the path f ◦λ : ]−ε, ε[→ Rd at 0, with (f ◦λ)(0) =
f(p). From this we conclude that the derivative at a point p ∈ M of a map f : M → N
between surfaces is a linear transformation

f ′(p) : TpM → Tf(p)N .

Pictorially:

Example 2.10. Let m ≥ 1. The antipodal map A : Sm → Sm, given by A(p) = −p, is
smooth map. For p ∈ Sm and a smooth parametrization φ : V0 → V ⊆ Sm of V ∋ p,
with φ(a) = p and v = φ′(a) · v0 ∈ TpM , we have

A′(x) · v = (A ◦ φ)′(a) · v0 = (−φ)′(a) · v0 = −φ′(a) · v0 = −v .
Thus f ′(p) : TpS

m → T−pS
m is just the multiplication by −1. (Note that TpS

m =
T−pS

m ⊆ Rm+1 since both are the orthogonal complements of x and −x; think about
the case m = 1.)

It follows from Theorem 2.7 that a map f : M → N between Ck-surfaces is of class
Ck if and only if there exists Ck-parametrizations ψ : V0 → V ⊆ N and φ : U0 → U ⊆M ,
p ∈ U , such that f(U) ⊆ V and ψ−1 ◦ f ◦ φ : U0 → V0 is of class Ck. (See [6, p. 40].)

If f :M → N is differentiable at p ∈M and g : N → Rd is differentiable at f(p), then
g ◦f is differentiable at p and (g ◦f)′(p) = g′(f(p)) ·f ′(p). This follows from Theorem 2.7
and the chain rule (Theorem A.1) applied to ((g ◦f)◦φ)(p) = ((g ◦ψ)◦ (ψ−1 ◦ (f ◦φ))(p).
Pictorially:

From the above, we see that there exists a category whose objects are surfaces of a
fixed class of differentiability Ck and whose morphisms are maps of class Ck between



30 2. Differential Forms

surfaces. In Chapter 3, we will focus on the category for which k = ∞, that is, smooth
surfaces and smooth maps between them.

If f : M → N is a diffeomorphism, then f ′(p) : TpM → Tf(p)N is an isomorphism
for each p ∈ M . Therefore, TpM and Tf(p)N have the same dimension as vector spaces,

whence M and N also have the same dimension as surfaces. If, in addition, f ∈ Ck,
it follows that f ◦ φ : V → f(V ) ⊆ N is a Ck parametrization f(V ), for every Ck

parametrization φ : V0 → V ⊆M .

LetM andN be surfaces with dimensionsm and n respectively. Given a differentiable
map f : M → N we can compute the matrix of its derivative f ′(p) : TpM → Tf(p)N
with respect to bases Bφ(u) ⊆ TpM and Bψ(v) ⊆ Tf(p)N , where φ : U0 → U ∋ p and
ψ : V0 → V ∋ f(p) are parametrizations such that p = φ(u) and f(p) = ψ(v). Since
(f ◦ φ)(u) = (ψ ◦ (ψ−1 ◦ f ◦ φ))(u) and

f ′(p) ·
(
∂φ

∂uj
(u)

)
= (f ◦ φ)′(u) · ej ,

where ej is the jth canonical vector in Rm, the chain rule gives us

(2.1) f ′(p) ·
(
∂φ

∂uj
(u)

)
=
∂(f ◦ φ)
∂uj

(u) =

n∑
i=1

∂ψ

∂vi
(v) · ∂(ψ

−1 ◦ f ◦ φ)i
∂uj

(u) .

Thus the matrix of the linear map f ′(p) is precisely the jacobian matrix of ψ−1 ◦ f ◦ φ
at u = φ−1(p).

2.1.1. Partitions of Unity

Now we shall introduce the concept of partitions of unity on a surface. This will be
necessary to define integral of forms on surfaces in § 2.3.

A family of subsets Aλ of a topological space X is said to be locally finite when each
x ∈ X belongs to a neighborhood which intersects finitely many Aλ’s. If, additionally,
X =

⋃
Aλ, we say that (Aλ)λ∈L is a locally finite cover for X.

When it comes to surfaces, locally finite families enjoy the following properties:

i) Every locally finite familiy on a surface is countable. ([11, p. 349])

ii) Compact subsets of a surface intersect only finitely many members of a locally
finite family. ([11, p. 350])

A partition of unity of class Ck on a surface (of class Ck) consists of a family of Ck

functions (ξλ)λ∈L, ξλ :M → R, such that

1. For every λ ∈ L, ξλ ≥ 0 on M ;

2. (supp ξλ)λ∈L is locally finite on M ;

3. For every x ∈M ,
∑
ξλ(x) = 1.

Given a cover A = (Aλ)λ∈L for a surface M , a partition of unity
∑
ξλ = 1 is said to

be strictly subordinated to A if supp ξλ ⊆ Aλ for every λ ∈ L. The next theorem (whose
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proof can be found in [11, p. 351]) tells us that we can always find such partitions of
unity.

Theorem 2.11. Given an open cover A for a surface M of class Ck, there exists a
(countable) partition of unity, of class Ck, strictly subordinated to A.

In the next chapter, this result will help us define a particular example of short exact
sequence of cochain complexes. Its proof is based on is based on two lemmas, one of
which we state now (to be used in § 3.3).

Lemma 2.12. Every surface can be written as a countable union of compact sets Ki

such that Ki ⊆ intKi+1.

The lemma above has a rather important consequence besides Theorem 2.11, namely

Proposition 2.1. Let M be a surface of class Ck and B a basis for the topology of M
which is closed under finite intersections. Then M =

⋃
i∈N Vi, where each Vi is a finite

union of open sets belonging to B such that Vi ∩ Vj = ∅ for every j ≥ i+ 2.

Proof. By Lemma 2.12 we have M =
⋃
i∈NKi where each Ki is a compact set and

Ki ⊆ intM Ki+1. We argue inductively, making use of Borel-Lebesgue.

1. Define V1 =
⋃
Aλ1 , where K1 ⊆

⋃
Aλ1 is a finite open cover by sets Aλ1 ∈ B

such that V 1 ⊆ intM K2.

Since K2 − intM K1 is compact (closed subseteq of a compact space):

2. Set V2 =
⋃
Aλ2 , where K2 − intM K1 ⊆

⋃
Aλ2 is a finite open cover by sets

Aλ2 ∈ B such that V 2 ⊆ intM K3.

Moreover, Ki+1 − intM Ki is compact for every i ∈ N. Thus

3. For every i ≥ 3, set Vi =
⋃
Aλi , where Ki − intM Ki−1 ⊆

⋃
Aλ2 is a finite open

cover by sets Aλi ∈ B, chosen so that V i ⊆ intM Ki+1 and Vi ∩ V i−2 = ∅.

Q.E.D.

The previous proposition will be crucial during the proof of Poincaré duality in § 3.3.
The next one will be useful to compute cohomology groups of the punctured sphere in
§ 3.2. For a proof see [11, p. 348].

Proposition 2.2. Let M be a surface of class Ck, p ∈ M and A ⊆ M an open set
with p ∈ A. There exists a compactly supported function ξ : M → [0, 1] and open sets
U,W ⊆ A such that p ∈ U ⊆W , supp ξ ⊆W and ξ = 1 on U .

2.1.2. Orientation

The concept of orientability is crucial ([11, p. 372]) to the definition of surface inte-
grals, to be defined in § 2.3 below. We introduce it now.
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Given a surface M , two C1 parametrizations φ : V0 → V and ψ :W0 →W on M are
said to be coherent if V ∩W = ∅ or V ∩W ̸= ∅ and jac(ψ−1 ◦ φ) > 0 8 on φ−1(V ∩W ).
Setting ξ = ψ−1 ◦ φ, this last condition translates into

∂φ

∂xj
(x) =

m∑
i=1

∂ψ

∂yi
(y)

∂ξi
∂xj

(x) , where det

[
∂ξi
∂xj

(x)

]
> 0 ,

for p = φ(x) = ψ(y) ∈ V ∩W and 1 ≤ j ≤ m. In other words, for every p ∈ V ∩W , the
maps φ and ψ determine two positive bases on TpM , where the corresponding change of
basis matrix is precisely the jacobian matrix of the diffeomorphism ψ−1◦φ at x = ψ−1(p).

Let M be a surface. By a coherent Ck-atlas on M we mean an atlas A (of class Ck)
such that any two parametrizations φ,ψ ∈ A are coherent. In this case A is said to be
maximal when it is a maximal element with respect to the inclusion relation in the set
of coherent Ck-atlases on M . One can pass from a coherent Ck-atlas A to a maximal
coherent Ck-atlas by including in A all parametrization φ such that φ and ψ are coherent
for all ψ ∈ A.

We say that a surfaceM of class Ck is orientable when it admits a coherent Ck-atlas.
In this case, there is also a maximal coherent Ck-atlas, which is called an orientation.
An oriented surface is an orientable surface on which an oriention A has been chosen;
elements φ ∈ A are called positive parametrizations. We will write φ > 0 to denote a
positive parametrization.

Example 2.13. The product of two orientable surfaces is also an orientable surface ([11,
p. 256]). Thus, arguing indutively, one verifies that a finete product of orientable surfaces
is yet another orientable surface.

Example 2.14. Surfaces that can be covered by only one parametrization are orientable,
since the singleton consisting of such parametrization is a coherent atlas. Thus, open
subsets U ⊆ Rm can be (and will be) regarded as oriented smooth surfaces (U,A), where
A is the maximal coherent C∞-atlas originating from the coherent atlas {idU}. (This
will be the case in Example 2.18 below.)

Example 2.15. If U is an open subset of an orientable surfaceM , then U is an orientable
surface itself. Indeed, choosing a coherent atlas A on M we form a coherent atlas on U
consisting of the restrictions φ|φ−1(U∩V ) of parametrizations φ : V0 → V belonging to A.

8We use jac f(x) to denote the function x 7→ det f ′(x) (the jacobian of f at x).
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Remark 2.16. In view of the previous example, open sets of an oriented surface M will
always be considered as oriented surfaces with the orientation induced by that of M .

Example 2.17. For m ≥ 1, Sm is an orientable smoooth surface ([11, p.254]). The
4-dimensional S ⊆ R6 consisting of 2× 3 matrices of rank 1 is non-orientable. A widely
known example of non-orientable surface is the Möbius strip (Figure 2.17), which can be
obtained from the rectangle [0, 2π]× ]0, 1[ by identifying the points (0, t) and (2π, 1− t)
for all 0 < t < 1. The Möbius strip can also be defined as smooth surface of codimension
1 in R3. (See [11, p. 258-259].)

Figure 1. The Möbius strip as a surface of codimension 1 in R3. Source:
https://pgfplots.net/moebius-strip/.

If M and N are diffeomorphic surfaces, then M is orientable if and only if N is
orientable. For instance, to see that the orientability of M implies that N is orientable,
one constructs a coherent Ck-atlas on N using the composites f ◦φ, where φ is a positive
parametrization on M . For the converse, the same argument applies with f−1.

Let us fix an orientation A on an orientable surfaceM . A parametrization ξ : V0 → V
is said to be negative whenever jac(φ−1 ◦ ξ) < 0 on ξ−1(V ∩W ), for every φ : W0 → W
in A; we write ξ < 0. Any two negative parametrizations are coherent, and thus form a
maximal coherent Ck-atlas denoted byA∗. If we considerM together with the orientation
given by A∗, we say that M has the opposite orientation to A; we write −M .

A diffeomorphism f :M → N between oriented surfaces is said to preseve orientation
if f ◦φ is positive parametrization on N whenever φ is a positive parametrization onM . If
f does not preserve orientation we say that f is an orientation-reversing diffeomorphism.

Example 2.18. Each open subset ]ai, bi[⊆ R is diffeomorphic to R since f : ]ai, bi[→ R
given by

f(x) = tanh−1

(
2(x− ai)

bi − ai
− 1

)
is a smooth diffeomorphism whose inverse is

g(x) = ai +
(tanh(x) + 1)(bi − ai)

2
.

https://pgfplots.net/moebius-strip/
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If C =
∏m
i=1 ]ai, bi[ is an open rectangle in Rm, we then have a smooth diffeomorphism

F = f1 × · · · × fm : C → Rm whose coordinate functions are Fi = fi ◦ pi, where pi
denotes the ith projection, that is, Fi(x1, . . . , xm) = fi(xi). Moreover, F is orientation-
preserving. Indeed, let φ : U0 → U ⊆ C be a smooth positive parametrization on C.
From the convention established in Example 2.14, we only need to show that

jac((idRm)−1 ◦ (F ◦ φ))(x) > 0

for x ∈ U0, which is the same as jac(F ◦ φ)(x) > 0. Note that jacφ(x) > 0 since φ and
idC are coherent. Also

jacF (u) =

m∏
i=1

f ′i(ui) =

m∏
i=1

bi − ai
2(ui − ai)(bi − ui)

> 0 ,

for every u ∈ C. Thus jac(F ◦ φ)(x) = jacF (φ(x)) jacφ(x) > 0. The existence of such
diffeomorphism will be useful during § 3.3.

An oriented smooth surface M is said to be reversible if there exists a smooth
orientation-reversing diffeomorphism f : M → M . In case M does not admit such
diffeomorphisms we say that M is irreversible. In § 3.4 we present an example of an
irreversible surface as an application of Poincaré duality.

Example 2.19. If m is even, then Sm is reversible since the antipodial map (Example
2.10) reverses orientation. For further details, see [11, p. 264].

2.1.3. Homotopy

In order to define homotopy in the context of surfaces, we now give a brief overview
on surfaces with boundary.

Let φ : E → R be a nonvanishing linear functional on a real vector space E. A
half-space H ⊆ E is a set H = {x ∈ E ; φ(x) ≤ 0}. The boundary of H, denoted by ∂H,
is the ∂H = {x ∈ E ; φ(x) = 0}. Since ∂H = frH 9, we have H = intH ∪ ∂H. This
means that an open set A of H is either a subset of intH or it intersects the boundary
∂H. For an open set A ⊂ H, its boundary is ∂A = A ∩ ∂H.

One can extend the definition of differentiability (in the sense of Fréchet and Stolz)
to maps defined on open sets of some half-space H ⊆ Rm. A map f : A → Rn, where
A ⊆ H is an open in H, is said to be differentiable (resp. of class Ck, k ≥ 1), if it is
the restriction of a differentiable map (resp. of class Ck) F : U → Rn on an open set
U ⊆ Rm, where U ⊇ X. In this case, all differentiable extensions F of f have the same
derivative F ′(x) : Rm → Rn, and we set f ′(x) to be this common linear map. (See [11,
p. 378].)

This generalization allows one to redefine a parametrization φ : V0 → V ⊆ Rn

requiring only that V0 be an open set of some half-space in Rn. Thus, a set M ⊆ Rn is
said to be an m-dimensional surface with boundary (of class Ck) if every point x ∈ M

9The symbol frX denotes the topological frontier.
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belongs to an open neighborhood V ⊆ M which is the image of a Ck-parametrization
φ : V0 → V defined on an open set V0 of some half-space in Rn.

Let M be an (m + 1)-dimensional surface with boundary. The boundary of M , de-
noted by ∂M , is defined as the set points x ∈ M such that x = φ(u) =⇒ u ∈ ∂U0,
whenever φ : U0 → U is a C1-parametrization of U0 ∋ x. The boundary ∂M is an
m-dimensional surface (without boundary) having the same differentiability class as M .
(See [11, p. 381].)

Remark 2.20. The definition of surfaces given in § 2.1 corresponds to the case where
∂M = ∅. Whenever we refer to M as “surface” we mean a surface without boundary, in
the sense defined before.

Orientability is defined in the same way for surfaces with boundary, but in this case
the orientation on M induces an orientation on ∂M . For further details, see [11, p. 384].
Also, differentiability of maps between surfaces with boundary is defined in the same way
as before, the only main difference being that f ◦ φ is differentiable in the sense defined
above.

For surfaces with boundary, we usually have similar results and definitons to those
given before. (See [11].) For instance, the product of two surface with boundary is not a
surface with boundary ([11, p. 387]). Nevertheless, if M is a surface and N is a surface
with boundary, then their product M ×N is a surface with boundary and

∂(M ×N) =M × ∂N .

Also M ×N is orientable whenever M and N are orientable. The case of interest here is
the product M × I, where M is a surface and I = [0, 1].

Let M and N be surfaces and I = [0, 1]. Two Ck-maps f, g :M → N are said to be
homotopic (or C0-homotopic) if there exists a continuous map H : M × I → N , called
homotopy, such that H(x, 0) = f(x) and H(x, 1) = g(x); we write

H : f ≃ g or f ≃ g .

If H ∈ Ck, f and g are said to be Ck-homotopic. Homotopy of class Ck defines an
equivalence relation on the set of Ck between M and N .(See [11, p. 397].)

A surfaceM is said to be contractible if the identity map idM :M →M is homotopic
to a constant map on M . If such homotopy is Ck, then M is said to be Ck-contractible.

The next theorem states two important facts regarding homotopies which will be
useful later on.

Theorem 2.21. The following are true:

1. Every continuous map f :M → N between surfaces of class Ck is homotopic to
a Ck-map g :M → N .

2. Any two Ck-maps f, g :M → N which are homotopic, are also Ck-homotopic.

The proof of such facts rely on the existence of tubular neighborhoods of surfaces
and can be seen in [8, 6]. In particular, we have the following
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Proposition 2.3. Every contractible surface of class Ck is also Ck-contractible.

Let M be a surface. An open cover M =
⋃
λ∈LAλ is said to be simple when every

finite intersection of open sets Aλ is contractible. Using tubular neighborhoods and con-
vexity arguments it can be shown ([7, p. 37]) that every open cover of a surface can be
refined10 by a simple cover. In particular, from Borel-Lebesgue, we obtain

Proposition 2.4. Every compact surface admits a finite simple covering.

This last result tells us that every compact surface is of finite type. By that we mean
a surface which admits a finite simple cover.

More generally, the concept of homotopy (and that of contractible space) is defined
in the same way as above, for topological spaces, except there is no differential structure
in this context, that is, the maps are just continuous. Homotopy is still an equivalence
relation in the set of continuous maps between topological spaces X and Y ; the quotient
by this relation is denoted by [X;Y ] and elements therein are denoted by [f ] and called
homotopy class of f .

It can be shown ([14, p. 24]) that the composite of homotopic maps is homotopic, that
is, g0f0 ≃ g1f1 whenever f0 ≃ f1 and g0 ≃ g1. This shows that there exists a category,
called homotopy category, whose objects are topological spaces and whose morphisms are
homotopy classes of continuous maps between topological spaces.

We say that two spaces have the same homotopy type if they are isomorphic in the
homotopy category. Thus X and Y have the same homotopy type if, and only if, we can
find maps f : X → Y and g : Y → X such that fg ≃ idY and gf ≃ idX . In particular,
homeomorphic spaces have the same homotopy type.

In § 3.1 we describe a functor from the homotopy category of smooth surfaces to the
category of graded R-modules.

Example 2.22. Let p ∈ Sm ⊆ Rm+1 (m ≥ 1) be the north pole. Since the sterographic
projection π : Sm − {p} → Rm is a homeomorphism, it follows that Sm − {p} and Rm

have the same homotopy type.

Example 2.23. Let i : Sm ↪→ Rm+1 be the inclusion map. The unit sphere Sm is
isomorphic to Rm+1−{0} in the homotopy category. Indeed, the map f : Rm+1−{0} →
Sm as f(x) = x/|x| is such that f ◦ i = idSm and H : i ◦ f ≃ idRm+1−{0}, where
H(x, t) = (1− t)x/|x|+ tx.

Example 2.24. If p ∈ Sm (m ≥ 2) is the north pole, the sterographic projection
π : Sm − {p} → Rm maps the south pole q to 0. Thus, it restricts to a homeomorphism
π : Sm − {p, q} → Rm − {0}. Therefore, Sm − {p, q} and Rm − {0} have the same
homotopy type. From the previous example, it follows that Sm − {p, q} has the same
homotopy type Sm−1.

10A cover (Aλ)λ∈L is refined by another cover (Bµ)µ∈J when each Bµ ⊆ Aλ for some λ ∈ L.
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Example 2.25. If Y is a contractible topological space, thenX×Y andX have the same
homotopy type, for any topological space X. Indeed, there is a homotopy H̃ : Y ×I → Y
from a constant map c : Y → Y to idY . We take f : X × Y → X and g : X → X × Y
to be f(x, y) = x and g(x) = (x, c). Thus f ◦ g = idX and g ◦ f ≃ idX×Y , where the

homotopy H : (X × Y )× I → X × Y is given by H((x, y), t) = (x, H̃(y, t)).

To finish up this section, we now state a result to be used in § 3.2. A proof can be
found in [11, p.406].

Proposition 2.5. Let p ∈ A ⊆ Sm, where A is open in Sm. There exists an open set
V ⊆ Sm such that p ∈ V ⊆ A and V is diffeomorphic to Rm.

2.2. Differential Forms

In order to define differential forms on surfaces, we assume basic prior knowledge of
multilinear algebra over finite-dimensional real vector spaces. (Natural references are
[11, 10].)

Let M ⊆ Rn be an m-dimensional surface. An r-form on M is a map

(2.2) ω :M →
⋃
x∈M

Ar(TxM)

which assigns to each point x ∈ M an alternating r-linear form ω(x) ∈ Ar(TxM).11

Although there might be no concept regarding differentiability involved, it is common to
refer to a map as the one in (2.2) as a differential form of degree r on M .

Now let us fix parametrization φ : U0 → U ⊆ M of a neighboord U ∋ x, where
x = φ(u). As we know, this determines a basis{

∂φ

∂u1
(u), . . . ,

∂φ

∂um
(u)

}
⊆ TxM ,

which in turn, determines a dual basis

{du1(x), . . . , dum(x)} ⊆ (TxM)∗ .

The exterior products
dui1(x) ∧ · · · ∧duir(x) ,

with 1 ≤ i1 < · · · < ir ≤ m, constitute a basis for Ar(TxM). Therefore, we can write

ω(x) =
∑

1≤i1<···<ir≤m
ai1···ir(u) dui1(x) ∧ · · · ∧duir(x) ∈ Ar(TxM) ,

where

ai1···ir(u) = ω(φ(u)) ·
(
∂φ

∂ui1
(u), . . . ,

∂φ

∂uir
(u)

)
.

This means that, relative to each parametrization φ : U0 → U , the r-form ω deter-
mines

(
m
r

)
functions ai1···ir : U0 → R given by the last equality above, called coordinate

functions with respect to φ. Also, note that, for each i = 1, . . . ,m, dui is a differential

11We shall denote the space of alternating r-linear forms on a vector space E by Ar(E).
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1-form on U which assigns to every x ∈ U the 1-linear form dui(x) ∈ (TxU)∗ = (TxM)∗.
Thus, ω can be written as

(2.3) ω =
∑

1≤i1<···<ir≤m
ai1···ir dui1 ∧ · · · ∧duir ,

where dui1 ∧ · · · ∧duir denotes the exterior product of 1-forms dui. The exterior product
α ∧β of a differential r-form α and a differential s-form β is defined in the obvious way
as the (r + s)-form given by (α ∧β)(x) = α(x) ∧β(x).

In order to avoid the heavy notation in (2.3), we write

ω =
∑
I

aI duI or ω(x) =
∑
I

aI(u) duI ,

where the sum is taken over all sets I = {i1 < · · · < ir} ⊆ {1, 2, . . . ,m}. Most of the
time, we will use the notation duI to represent the r-linear form duI(x), there is no harm
in doing so.

For a point x = φ(u) = ψ(v), with v = (ψ−1 ◦φ)(u), lying on the intersection of two
parametrized neighborhoods U ∩ V ⊆M , we have

ω(x) =
∑
J

aJ(u) duJ =
∑
I

bI(v) dvI .

These coordinate functions satisfy the change of coordinates formula ([11, p. 412])

(2.4) aJ(u) =
∑
J

jacIJ(ψ
−1 ◦ φ)(u)bI(v) ,

where jacIJ(ψ
−1 ◦ φ)(u) represents the determinant of the submatrix obtained from

the jacobian matrix of ψ−1 ◦ φ at u by selecting rows and columns with indices in
I = {i1 < · · · < ir} and J = {j1 < · · · < jr}, respectively.

It follows from the definition above that the sum of two r-forms on an m-dimensional
surface is yet an r-form on the same surface. Also, the product of an r-form by a real
number is an r-form. This means that the set of differential r-forms on an m-dimensional
surface has a natural (real) vector space structure. Note that if r > m, then such vector
space is trivial, since Ar(TxM) = {0} for every x ∈M .

The next proposition summarizes some useful properties of the exterior product of
forms. The proof follows from the same properties applied to multilinear forms. (See [10,
p. 53].)

Proposition 2.6. Let α, β, γ and η be differential forms on a surface M such that
degα = deg η = r, deg β = s and deg γ = t. The exterior product of forms enjoys the
following properties:

1. (α ∧β) ∧γ = α ∧ (β ∧γ);

2. (α+ η) ∧β = α ∧β + η ∧β;

3. cα ∧β = α ∧cβ = c(α ∧β) for c ∈ R;

4. α ∧β = (−1)rsβ ∧α.
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In case M ⊆ Rn is an n-dimensional surface, we already know that M is an open set
in Rn (Example 2.3). This means that we need only one parametrization to cover M ,
namely, the identity map. Thus, for every point x ∈ M , Ar(TxM) = Ar(R

n) and the
dual basis is the same, denoted by {dx1, . . . , dxn} ⊆ (Rn)∗. Therefore, an r-form on M
is a map ω :M → Ar(R

n) such that

ω(x) =
∑
I

aI(x) dxI ∈ Ar(R
n) ,

where aI :M → R are functions.

A differential r-form ω on an m-dimensional Cs-surface M is said to be of class
Ck, for 0 ≤ k < s, if there exists a covering of M by images of Ck-parametrizations
φ : U0 → U for which the coordinate functions aI : U0 → R are Ck functions; we write
ω ∈ Ck. Note that the change of coordinates formula above allows r-forms on Cs-surface
to have differentiability class, at most, s − 1. If M is smooth (C∞), then we say that
ω ∈ C∞ whenever ω ∈ Ck for every k.

The set of differential r-forms of class C∞ on a smooth surfaceM , denoted by Ωr(M),
is closed under addition and scalar multiplication, thus is a linear subspace of the space
of r-forms on M . Note that Ωr(M) = {0} for r > m.

Example 2.26. Every vector field F = (F1, . . . , Fm) of class C
k on an open set U ⊆ Rm

corresponds to a 1-form ωF ∈ Ck on U , namely,

ωF =

m∑
i=1

Fi dxi .

Given an r-form ω on a surface M , we define its support as12

suppω = clM ({x ∈M ; ω(x) ̸= 0}) ,

where clM denotes the topological closure in M . Thus suppω is always a closed set of
M . Throughout the text, we will be mostly interested in differential forms with compact
support, since integrals will only be defined for such forms.

Let α and β be compactly supported r-forms on a surface M and c ∈ R − {0}. We
have

{α+ β ̸= 0} ⊆ {α ̸= 0} ∪ {β ̸= 0} and {cα ̸= 0} = {α ̸= 0} .
Thus supp(α+ β) and supp(cα) are compact sets. Since the support of the zero form is
empty, it follows that the set of compactly supported r-forms is a linear subspace of the
spaces of r-forms on M .

From the above we see that the space of compactly supported differential r-forms of
class C∞ on M , denoted by Ωrc(M), is a linear subspace of Ωr(M).

Let (ωi)i∈I be a family of r-forms of class Ck on a surface M . If each point x ∈ M
belongs only to a finite number of supports suppωi then we can define a new r-form by

12We also use the shorter notation {ω ̸= 0} instead of {x ∈M ; ω(x) ̸= 0}.
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setting

(2.5) ω =
∑
i∈I

ωi .

The definition of ω goes as follows. Given x ∈ M , we have x ∈
⋂n
s=1 suppωis for some

n ∈ N. Thus, we define

ω(x) =
n∑
s=1

ωis(x) .

Note that it might not be ω ∈ Ck. Nevertheless, in § 2.3 we shall overcome this
problem.

A differentialm-form ω on an oriented m-dimensional surfaceM is said to be positive
if, for every x ∈M and each positive basis {v1, . . . , vm} ⊆ TxM , ω(x) · (v1, . . . , vm) > 0.

Example 2.27. If M is an oriented m-dimensional surface of class Ck, then there exists
a positive m-form ν on M of class Ck−1, called volume form (see [11, p. 336]). Relative
to a positive Ck-parametrization φ : U0 → U ⊆M , ν is given by

ν(x) =
√
g(u)du1 ∧ · · · ∧dum

for every x = φ(u) ∈ U , where g(u) = det(gij(u)) and

gij(u) =
〈 ∂φ
∂ui

(u),
∂φ

∂uj
(u)

〉
.

Moreover, orientability of surfaces translates into the existence of nonvanishing con-
tinuous forms as shown by the result whose proof can be seen in [11, p. 339].

Proposition 2.7. Let M be an m-dimensional surface. Then M is orientable if, and
only if, there exists a continuous m-form on M such that ω(x) ̸= 0 for every x ∈M .

2.2.1. Pullback

We will now define the pullback of forms and state some of its properties. It is well
known that a linear map A : E → F between finite-dimensional vector spaces induces a
map A∗ : Ar(F ) → Ar(E) given by

(A∗α)(v1 . . . , vr) = α(A(v1), . . . , A(vr))

for every α ∈ Ar(F ) and v1 . . . , vr ∈ F . Now, if f :M → N is a Ck-map (k ≥ 1) between
surfaces, for each point x ∈ M there is a linear map f ′(x) : TxM → Tf(x)N , which
induces a map

[f ′(x)]∗ : Ar(TxN) → Ar(Tf(x)M) .

The pullback of r-forms by f is a map

f∗ = f∗r : {r-forms on N} → {r-forms on M}

which assings to each r-form ω on N an r-form f∗ω on M given by

(2.6) (f∗ω)(x) = [f ′(x)]∗ · ω(f(x)) .
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More explicitly,

(f∗ω)(x) · (v1, . . . , vr) = ω(f(x)) · (f ′(x) · v1, . . . , f ′(x) · vr)

for every x ∈M and v1, . . . , vr ∈ TxM . Note that the pullback of a 0-form g : N → R is
just the composition of g ◦ f .

Example 2.28. An important example of pullback is the one given by a parametrization,
since it allows one to remain with the original coordinate functions. More precisely, let
φ : U0 → U ⊆ M be a parametrization, M ⊆ Rn an m-dimensional surface and ω an
r-form on M . Regarding φ as a map between surfaces φ : U0 → M and writing, for
x = φ(u) ∈ U ,

ω(x) =
∑
I

aI(u) duI ,

it can be shown ([11, p. 335]) that

(φ∗ω)(u) =
∑
I

aI(u) dxI

for every u = φ−1(x) ∈ U0, where {dx1, . . . , dxm} ⊆ (Rm)∗ denotes the dual basis.

Example 2.29. The inclusion map i :M ↪→ N yields yet another useful instance of the
pullback, called the restriction. Given an r-form on N , we write ω|M = i∗ω. For x ∈M ,
we already know that TxM ⊆ TxN . Thus, the definition of i∗ tells us that (i∗ω)(x) is the
restriction of the r-linear form ω(x) to TxM × · · · × TxM .

Remark 2.30. Dual to the concept of restriction of a form is that of extension. We
are more interested in the zero extension of a compactly support smooth forms; such
extension will be crucial in § 3.2. Let ω ∈ Ωrc(U), where U ⊆ M is open. From the
fact that ω = 0 on the open set U − suppω, we can define a smooth r-form ωM with
compact support (suppω) by setting ωM = ω on U and ωM = 0 on M − U . To check
that ωM ∈ C∞, the only parametrized neighborhoods that pose a problem are those
originating from points frU , but this can be overcome since dist(frU, suppω) > 0 and
ω = 0 on U − suppω.

The theorem below summararizes some of the important properties of pullbacks.
The first three items follow directly fom the definitions. Item 4. can be proved using the
change of coordinates formula from ω to f∗ω ([11, p. 334]), which in turn can be proved
using (2.6) and (2.1).

Theorem 2.31. Let f : M → N and g : N → P be Ck-maps (k ≥ 1), α, β r-forms on
N and c ∈ R. Then

1. f∗(cα+ β) = cf∗(α) + f∗(β) ;

2. f∗(α ∧β) = f∗α ∧f∗β ;

3. (g ◦ f)∗(ω) = f∗(g∗ω) ;

4. If r ≥ 1, α ∈ Cs and f ∈ Cs+1, with s ≥ 0, then f∗α ∈ Cs .
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When it comes to compactly supported r-forms, the pullback f∗ might not preserve
the compactness of suppω, that is, f∗ω might not have compact support if suppω is
compact ([7, p. 40]). In order for compactness to be preserved, it is necessary to impose
a new condition on f , namely, f must be a proper map. By that we mean a continuous
map f : X → Y between topological spaces such that f−1(K) ⊆ X is compact for every
compact set K ⊆ Y .

Clearly, the identity map and the composite of proper maps are also proper. There
is then a category whose objects are smooth surfaces and whose morphisms are smooth
proper maps between smooth surfaces.

Remark 2.32. If Y is a locally compact Hausdorff space, then f : X → Y is a proper
map if, and only if, f is a closed map and, for every y ∈ Y , f−1({y}) is compact. From
this characterization we see that the stereographic projection π : Sm − {p} → Rm is a
proper map. More generally, homeomorphisms f : X → M are proper whenever M is a
surface (Example 2.5). This will come in handy during § 3.2 and § 3.3.

In case X and Y are metrizable, the property of being proper is equivalent to saying
that, for every sequence (xn)n∈N of points xn ∈ X, the sequence (f(xn))n∈N has no con-
verging subsequence, whenever the same holds for (xn)n∈N. In particular, the inclusion
map i : X → Y ⊆ Rm is proper.

If X is compact and Y is Hausdorff, then continuous maps f : X → Y are proper,
since compact sets are also closed in Hausdorff spaces and closed sets are compact in
compact spaces.

Now, let f :M → N be a Ck+1-map (k ≥ 0) and ω a compactly supported r-form on
N , where r ≥ 0 and ω ∈ Ck. If x ∈ M is such f(x) /∈ suppω, then ω(f(x)) = 0, whence
(f∗ω)(x) = 0. Thus

{f∗ω ̸= 0} ⊆ f−1(suppω) .

From this, we see that

(2.7) supp f∗ω = clM ({f∗ω ̸= 0}) ⊆ clM (f−1(suppω)) = f−1(suppω) .

Therefore, supp f∗ω is compact whenever f is proper.

Remark 2.33. From Theorem 2.31(1) and (4), it follows that the pullback

f∗ : Ωrc(N) → Ωrc(M) .

by a smooth proper map f :M → N between smooth surfaces is a linear map.

2.2.2. Exterior Derivative

We end this section defining the exterior derivative of a differential form and stating
some of its properties. As we shall see in the next chapter, exterior differentiation is of
fundamental importance in extending cohomology to the context of smooth surfaces.

Let M be an m-dimensional surface of class C2 and ω an r-form on M such that
ω ∈ C1. For a paramatrization φ : U0 → U ⊆ M , relative to which ω =

∑
aIduI , there
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exists a differential (r + 1)-form ω′
φ on U given by

ω′
φ =

∑
I

m∑
j=1

∂aI
∂uj

duj ∧duI .

This (r + 1)-form is independent of the choice of parametrization; see [11, p. 344] for
further details.

The exterior derivative of ω is then defined as the (r+1)-form dω onM which assings
to each x ∈M the (r + 1)-linear form

(dω)(x) = ω′
φ(x) ∈ Ar+1(TxU) = Ar+1(TxM) ,

where φ : U0 → U ⊆ M is a parametrization of U ∋ x. Thus, for every x = φ(u) ∈ U ,
we can write

(dω)(x) =
∑
I

m∑
j=1

∂aI
∂uj

(u) duj ∧duI .

We also use a shorter notation:

dω =
∑
I

daI ∧duI ,

where

daI =

m∑
j=1

∂aI
∂uj

duj .

When there is need to be precise we will write drω instead of dω.

From the above expression for dω we see that process of passing from ω to dω de-
creases the diferentiability class by 1. Thus, for ω ∈ C∞, we have dω ∈ C∞.

Also, note that if ω is an m-form on an m-dimensional surface M , then dω = 0, since
Am+1(TxM) = {0}.

Example 2.34. If F = (P,Q) is a smooth vector field on an open subset U ⊆ R2 and
ωF its corresponding 1-form (Example 2.26), then

dωF =

(
∂Q

∂u
− ∂P

∂v

)
du ∧dv = (rotF ) du ∧dv .

Example 2.35. In particular, for a 0-form f :M → Rn of class C1, we see that

(2.8) df(x) =

m∑
j=1

∂(f ◦ φ)
∂uj

(u) duj .

where φ : U0 → U ⊆M is a parametrization of U ∋ x and x = φ(u). From this, it follows
that f is a constant function whenever M is connected.

The next theorem summarizes the main properties of the exterior derivative. For a
proof, see [11, p. 343].
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Theorem 2.36. Let f :M → N be a C2-map between surfaces, α, β r-forms on N , with
α, β ∈ C1, and c ∈ R. Then

1. d(cα+ β) = c dα+ dβ ;

2. If α ∈ C2, then d(dα) = 0 ;

3. d(α ∧β) = dα ∧β + (−1)degαα ∧dβ ;

4. dr(f
∗
rα) = f∗r+1(drα) .

From the first item above, it follows that the exterior derivative defines, for r ≥ 0, a
linear map

dr : Ω
r(M) → Ωr+1(M) .

Also, since {dω ̸= 0} ⊆ {ω ̸= 0}, the exterior derivative, restricts to a linear map

dr : Ω
r
c(M) → Ωr+1

c (M) .

Such linear maps will be crucial during the next chapter (§ 3.1), since they constitute
the coboundary operator of a special cochain complex.

Note that zero extensions of forms (Remark 2.30) commute with exterior derivatives,
that is, if M is a smooth surface and U ⊆M is open in M , then

dr(ωM ) = (drω)M

for ω ∈ Ωr(U). This will be useful in § 3.2.

Let ω be an r-form of class C1 on a surface M . We say that ω is closed when dω = 0.
If there exists an (r − 1)-form on M such that ω = dα, ω is said to be exact.

From item 4. above we see that a map f ∈ C2 between surfaces sends closed forms
to closed forms and exact forms to exact forms.

Also, it follows from item 3. every exact form is closed. Although the converse is not
always true, we shall now see an instance in which it is.

Theorem 2.37. Every closed differential r-form (r ≥ 1) on a contractible surface of
class C2 is also exact.

Proof. Suppose first thatM ⊆ Rp is anm-dimensional surface of class C2. Parametriza-
tions for the m+1-dimensional surfaceM×R are precisely the maps φ× idR : U0×R →
U × R, where φ : U0 → U ⊆ M (U0 ⊆ Rm) are parametrizations of U ∋ x, given by
(φ × idR)(u, t) = (φ(u), t) = (x, t). Thus, representing points of U0 × R ⊆ Rm+1 as
(u, t) = (u1, . . . , um, t) and dum+1 = dt, for any r-form ω on M ×R we can write13, with

13Note that the hypotesis of M being a C2-surface does not play a role here.
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respect to such a parametrization of U ×R ∋ (x, t),

ω(x, t) =
∑
S

aS(u, t)duS =
∑

m+1∈S
aS(u, t)duS +

∑
m+1/∈S

aS(u, t)duS

=
∑
I

(−1)r−1aI(u, t)dt ∧duI +
∑
J

aJ(u, t)duJ

= dt ∧
∑
I

(−1)r−1aI(u, t)duI +
∑
J

aJ(u, t)duJ

= dt ∧α(u, t) + β(u, t) ,

where I = {p1 < . . . < pr−1} and J = {j1 < . . . < jr} do not contain the index m + 1.
Such decomposition is unique, because if ω = dt ∧α0 + β0 is any other decomposition,
then dt ∧ (α − α0) + (β − β0) = 0, whence dt ∧ (β − β0) = 0, which implies β = β0, from
which we conclude that α = α0.

Let us denote Ωr0(X), r ≥ 1, as the space of continuous differential r-forms on a
surface X. Very well, the composite map

Ar : Ωr0(M ×R) −→ Ωr−1
0 (M ×R) −→ Ωr−1

0 (M)

ω 7→ α =
∑
I

cIdxI 7→
∑
I

(
∫ 1
0 cI(·, t) dt)dxI

is well-defined by the uniqueness of the decomposition of r-forms. Clearly, this map
is linear. Now consider the family of maps it : M → M × R, where t ∈ R, defined by
it(x) = (x, t). We will show that Ar+1(drω)+dr−1(Arω) = i∗1ω−i∗0ω for every r-form ω of
class C1 onM×R. Indeed, the decomposition ω = dt ∧α+β gives dω = dt ∧ (−dα)+dβ,
where deg(−dα) = r e deg(dβ) = r + 1. We compute this expression explicitly:

dω(x, t) = dt ∧

(−1)r
∑
k,I

∂aI
∂uk

(u, t)dxk ∧duI

+
∑
k,J

∂aJ
∂uk

(u, t)duk ∧duJ

= dt ∧

(−1)r
∑

1≤k≤m,I

∂aI
∂uk

(u, t)duk ∧duI +
∑
J

∂aJ
∂t

(u, t)duJ


+

∑
1≤k≤m,J

∂aJ
∂uk

(u, t)duk ∧duJ ,

where I = {p1 < . . . < pr−1} e J = {j1 < . . . < jr} do not contain the index m+1. Thus

A(dω)(x) = (−1)r
∑

1≤k≤m,I

(∫ 1

0

∂aI
∂uk

(u, t) dt

)
duk ∧duI+

+
∑
J

(∫ 1

0

∂aJ
∂t

(u, t) dt

)
duJ .

(2.9)
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On the other hand,

d(Aω)(x) = (−1)r−1
∑

1≤k≤m,I

∂

∂uk

(∫ 1

0
aI(u, t) dt

)
duk ∧duI

= (−1)r−1
∑

1≤k≤m,I

(∫ 1

0

∂aI
∂uk

(u, t) dt

)
duk ∧duI ,

since aI ∈ C1 on U0. Note that in the sum A(dω) + d(Aω) the first term in (2.9) cancels
out d(Aω), leaving just the r-form

∑
J

(∫ 1

0

∂aJ
∂t

(u, t) dt

)
duJ =

∑
J

(aJ(u, 1)− aJ(u, 0))duJ .

This is precisely the expression for i∗1ω − i∗0ω. Indeed, from the definition of pullback, it
follows that i∗p(dt) = 0 and

(i∗ω)(x) ·
(
∂φ

∂uk1
(u), . . . ,

∂φ

∂ukr
(u)

)
= ω(x, p) ·

((
∂φ

∂uk1
(u), 0

)
, . . . ,

(
∂φ

∂ukr
(u), 0

))
= aI(u, p)

for p = 0, 1. Thus, i∗p applied to ω =
∑

S aS(u, t)duS yields

i∗pω =
∑
J

aJ(u, p)duJ ,

where J = {j1 < . . . < jr} does not contain m+ 1. Therefore,

Ar+1(drω) + dr−1(Arω) = i∗1ω − i∗0ω ,

as we wanted to show.

Next we consider two differentiable maps f, g :M → N , where N is another surface
of class C2. Suppose that f and g are C2-homotopic; let H : M × [0, 1] → N be such

homotopy. Using Lemma A.4 we can extend H to a C2-map H̃ : M ×R → N defined
by H̃(x, t) = H(x, ξ(t)), where ξ : R → R (ξ ∈ C∞) is such that 0 ≤ ξ ≤ 1, ξ(t) = 0 for
t ≤ 0 and ξ = 1 for t ≥ 1. Thus, if Ar is the linear map defined above, then the map Tr
given by the composition

Ωr0(N)
H̃∗
−→ Ωr0(M ×R)

Ar−→ Ωr−1
0 (M) ,

is well-defined. Since H̃(x, 0) = f(x) and H̃(x, 1) = g(x), then f = H̃ ◦ i0 and g = H̃ ◦ i1,
where we take i0 and i1 as above. Therefore, f∗ = i∗0 ◦ H̃∗ and g∗ = i∗1 ◦ H̃∗. Thus, if
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ω ∈ Ωr0(V ), with ω ∈ C1, then H̃∗ω ∈ C1 and we have

Tr+1(drω) + dr−1(Trω) = (Ar+1 ◦ H̃∗)(drω) + dr−1((Ar ◦ H̃∗)ω)

= Ar+1(H̃
∗(drω)) + dr−1(Ar(H̃

∗ω))

= Ar+1(dr(H̃
∗ω)) + dr−1(Ar(H̃

∗ω))

= i∗1(H̃
∗ω)− i∗0(H̃

∗ω)

= (i∗1 ◦ H̃∗)ω − (i∗0 ◦ H̃∗)ω

= g∗ω − f∗ω .

It follows from this equality that if ω is a closed r-form onN , then g∗ω−f∗ω = dr−1(Trω),
whence g∗ω − f∗ω is an exact r-form on M . Finally, if M is contractible, then (by
Proposition 2.3) idM is C2-homotopic to a constant map c on M . Thus, taking g = idM
and f = c, if ω is a closed r-form on M , then g∗ω − f∗ω = ω is exact.

Q.E.D.

2.3. Integration of Forms on Surfaces

We now define the integral of a compactly supported differentiable m-form over an ori-
ented m-dimensional surface. This concept can be further extended to a differential form
whose support is not necessarily compact, but such generalization will not be needed for
our purposes.

Let us fix an oriented m-dimensional surface M of class C1. We begin by defining
the integral over M of a compactly supported continuous m-form ω such that suppω is
contained in the image of some positive parametrization φ : U0 → U ⊆ M . Relative to
φ, we can write ω(x) = a(u)du1 ∧ · · · ∧dum ∈ Am(TxM) for every x = φ(u) ∈ U , where
a : U0 → R is a continuous function such that supp(a) = φ−1(suppω) (this equality can
be verified directly by the definitons). Then we define the integral of ω over M by∫

M
ω :=

∫
K
a ,

where K ⊆ Rm is any compact Jordan-measurable14 set such that supp(a) ⊆ K ⊆ U0.

Clearly, this definition does not depend on the chosen compact set K since a is zero
outside its support. Also, the value of the above integral remains the same for any other
choice of positive parametrization (this follows from the change of variables formula; see
[11, p. 333]).

What if suppω is contained in the image of a negative parametrization? Well, to see
what happens, let ψ : V0 → U ⊆ M be a negative parametrization, with suppω ⊆ U ,
relative to which ω(x) = b(v) dv1 ∧ · · · ∧dvm, for x = ψ(v) ∈ U . We obtain a new
parametrization φ : U0 → U by setting φ = ψ◦f and U0 = f−1(V0), where f : Rm → Rm

14By a Jordan-measurable set, we mean a set X ⊆ Rm whose frontier fr(X) has null Lebesgue measure.
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is a diffeomorphism given by

f(y1, . . . , ym) = (−y1, y2, . . . , ym) .
Note that jac f = −1 on U0. Since

jac(ζ−1 ◦ φ) = jac(ζ−1 ◦ ψ) jac f > 0

for any positive parametrization ζ : W0 → W , with W ∩ U ̸= ∅, it follows that φ is a
positive parametrization. From the change of coordinates formula (2.4), we see that

ω(x) = jac(ψ−1 ◦ φ)(u) b(f(u)) du1 ∧ · · · ∧dum = −b(f(u)) du1 ∧ · · · ∧dum

for x = φ(u) ∈ U . For a compact Jordan-measurable L ⊆ Rm such that ψ−1(suppω) ⊆
L ⊆ V0, we have a compact Jordan-measurable K = f−1(L) such that φ−1(suppω) ⊆
K ⊆ U0. Thus, Theorem A.3 gives∫

M
ω =

∫
K
−(b ◦ f) = −

∫
L
b .

Summarizing: the integral over M of a compactly supported continuous m-form ω
whose support is contained in the image of a positive or negative parametrization φ :
U0 → U ⊆ M , relative to which ω(x) = a(u)du1 ∧ · · · ∧dum for every x = φ(u) ∈ U , is
defined as ∫

M
ω := ±

∫
K
a ,

where K ⊆ Rm is any compact Jordan-measurable set such that supp(a) ⊆ K ⊆ U0,
with positive sign if φ > 0 and negative sign if φ < 0.

From the discussion above, it follows that the integral of a differential form is a
“signed integral”, in the sense that its signal flips whenever the orientation of the surface
is flipped. More precisely,

(2.10)

∫
−M

ω = −
∫
M
ω .

Let ω be an m-form on M and φ : U0 → U ⊆M a positive or negative parametriza-
tion, with suppω ⊆ U , relative to which ω(x) = a(u)du1 ∧ · · · ∧dum for every x =
φ(u) ∈ U . If i : U ↪→ M denotes the inclusion, then, relative to φ, we can write
i∗ω = a du1 ∧ · · · ∧dum. Thus

(2.11)

∫
M
ω =

∫
U
i∗ω

A more general result is

Proposition 2.8. Let (M,A) be an oriented m-dimensional surface of class C1, A ⊆M
an open set, φ : U0 → U ⊆ A a positive (or negative) parametrization on A and ω a
compactly supported continuous m-form on M such that suppω ⊆ U . Then∫

M
ω =

∫
A
i∗ω ,

where i : A ↪→M is the inclusion map.
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Proof. We only prove the case where φ is positive; the negative case is analogous. Since
A is open in M , it follows that U ⊆ M is a parametrized neighborhood in M . Also,
φ ∈ A. To see this, let ξ : W0 → W ⊆ M a parametrization on M belonging to A such
that W ∩ V ̸= ∅. Since φ is a positive parametrization on A, we see (Remark 2.16) that
φ and ζ = ξ|ξ−1(W∩A) : ξ

−1(W ∩A) → W ∩A are coherent parametrizations on A, that
is,

ζ−1 ◦ φ : φ−1(W ∩A ∩ U) → ζ−1(W ∩A ∩ U)

has positive jacobian on φ−1(W ∩ A ∩ U). Since W ∩ A ∩ U = W ∩ U and the map
ξ−1 ◦ φ : φ−1(W ∩U) → ξ−1(W ∩U) coincides with ζ−1 ◦ φ, the claim follows. Thus, by
(2.11), we see that ∫

M
ω =

∫
U
i∗Uω ,

where iU : U ↪→ M is the inclusion. On the other hand, if j : U ↪→ A is the inclusion
map, then i ◦ j = iU . Since i is proper, supp i

∗ω is compact. From (2.7), we have

supp i∗ω ⊆ i−1(suppω) = suppω ⊆ U .

Again, from (2.11), it follows that∫
A
i∗ω =

∫
U
j∗i∗ω =

∫
U
(i ◦ j)∗ω =

∫
U
i∗Uω .

Q.E.D.

Before going into definition of integral, we make a small, but important, remark.

Remark 2.38. Let (ωi)i∈I be a family of r-forms of class Ck on a surface M . If
(suppωi)i∈I is locally finite family on M , then ω =

∑
ωi ∈ Ck (cf. 2.5). To see this,

let U ∋ x0 be a neighborhood of x0 in M . We have U ∩ suppωi = ∅ except for a finite
set {i1, . . . , in} ⊆ I. Thus

ω(x) =

n∑
s=1

ωis(x)

for x ∈ U .

Now we extend the definition of integration given above to the case of a compactly
supported continuous m-form ω such that suppω is not necessarily contained in the
image of a positive parametrization.

Given a cover by images of positive parametrizations M =
⋃
Ui (φi : U0i → Ui), we

can choose (Theorem 2.11) a partition of unity
∑
ξi = 1 of class C1 on M which is also

strictly subordinated to the open cover (Ui)i∈N, that is, supp ξi ⊆ Ui for every i.

Set ωi = ξiω, and let x ∈ Uj for some j ∈ N. Since suppω is a compact set and
(supp ξi)i∈N is locally finite, we have suppω ∩ supp ξi = ∅ and Uj ∩ supp ξi = ∅ except
for a finite number of indices i. Thus ωi = ξiω = 0 on Uj for all but a finitely many i.
This shows that (suppωi)i∈N is locally finite.
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Also, note that ∑
i

ωi =
∑
i

ξiω = ω
∑
i

ξi = ω .

For every i ∈ N, suppωi ⊆ Ui and suppωi ⊆ suppω is a closed subset of the compact
set suppω, therefore suppωi is also compact. Then we define the integral of ω over M
by ∫

M
ω =

∑
i

∫
M
ωi .

This definition independs on the chosen partition of unity. Indeed, take
∑
ζj = 1 to

be another partition of unity on M , strictly subordinated to an open cover by images of
positive parametrizations M =

⋃
Vj and define ω′

j = ζjω and ωij = ξiζjω. We have∑
j

ωij =
∑
j

ξiζjω = ξiω
∑
j

ζj = ωi .

Similarly,

ω′
j =

∑
i

ωij .

Now, for every i, j ∈ N, suppωij ⊆ Ui and suppωij ⊆ Vj . Thus∫
M
ωi =

∑
j

∫
M
ωij e

∫
M
ω′
j =

∑
i

∫
M
ωij

We then conclude that∑
i

∫
M
ωi =

∑
i

∑
j

∫
M
ωij =

∑
j

∑
i

∫
M
ωij =

∑
j

∫
M
ω′
j .

In the next theorem we sum up some of the properties of surface integrals. The first
item tells us that integration of forms is a linear functional on Ωrc(M). This will come in
handy during Chapter 3.

Theorem 2.39. Let M and N be oriented m-dimensional surfaces of class C1, α and β
compactly supported continuous m-forms on M and ω a compactly supported continuous
m-form on N .

1. If c ∈ R, then ∫
M
(cα+ β) = c

∫
M
α+

∫
M
β .

2. If α ≥ 0 and there exists x ∈M such that α(x) > 0, then∫
M
α > 0 .

3. If f : M → N is an orientation-preserving (resp. reversing) diffeomorphism,
then ∫

M
f∗ω =

∫
N
ω

(
resp.

∫
M
f∗ω = −

∫
N
ω

)
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4. If A ⊆ N is an open set, suppω ⊆ A and i : A ↪→ N is the inclusion, then∫
N
ω =

∫
A
i∗ω .

5. The integral of a differential form is a signed integral:∫
−M

α = −
∫
M
α .

Proof. We will only prove the fourth item (item 5. follows from (2.10)). For a proof of the
first three items, see [11]. LetM =

⋃
k Vk be an open cover ofM by the images of positive

parametrizations φk : V0k → Vk, relative to which ω =
∑
ωk (finite sum), where each ωk is

a compactly supported continuousm-form onN such that suppωk ⊆ Vk∩suppω ⊆ Vk∩A.
From M =

⋃
k Vk we obtain a cover for A by parametrized neighborhoods, namely,

A =
⋃
k Vk ∩A. Also, note that i∗ω =

∑
i∗ωk, where each i

∗ωk is a compactly supported
continuousm-form and supp i∗ωk ⊆ Vk∩A (see (2.7)). Thus, from Proposition 2.8 applied
to ωk, it follows that ∫

N
ω =

∑
k

∫
N
ωk =

∑
k

∫
A
i∗ωk =

∫
A
i∗ωk .

Q.E.D.

Next we state Stokes’ Theorem and a corollary that will be useful in § 3.3. For a
proof, see [11, p. 391].

Theorem 2.40 (Stokes). Let ω be a compactly supported m-form of class C1 on an
oriented (m+1)-dimensional surface whose boundary ∂M we endow with the orientation
induced by that of M . Then ∫

M
dω =

∫
∂M

ω .

Corollary 2.40.1. The integral of an exact continuous m-form with compact support
on an m-dimensional oriented surface is zero.





Chapter 3

Poincaré Duality

This chapter puts together the topics developed in the first two, with the main goal
being a duality theorem due to H. Poincaré and some of its applications. Main references
are [2, 3, 7, 12, 13]. Exclusively in this chapter, unless otherwise stated, all
surfaces and differential forms are smooth (C∞).

3.1. de Rham Cohomology

We have already seen that, if M is an m-dimensional surface, exterior differentiation
defines a linear map dr : Ω

r(M) → Ωr+1(M) (r ≥ 0) such that dr+1dr = 0, and Ωr(M) =
{0} whenever r > m.

Such facts lead us to definition of the de Rham complex of M . By that, we mean the
cochain complex (over R) Ω∗(M) = (Ωr(M), dr)r∈Z, namely,

· · · 0 Ω0(M) Ω1(M) · · · Ωm(M) 0 · · ·d0 d1 dm−1 dm

In this case there is a slight change of notation from the one used in Chapter 1, we
denote Zr(Ω∗(M)) by Zr(M) and Br(Ω∗(M)) by Br(M). Also, even though the usual
notation for coboundary operators would require the superscript dr, we will follow [11]
and keep using the subscript notation dr for the exterior derivative (this will not cause
any problems, since most of the times we will omit the subscript when there is no room
for confusion).

The cohomology group of Ω∗(M) (which is a real vector space) is called de Rham
cohomology group of M and is denoted by

HdR(M) =
(
Hr
dR(M) = Zr(M)/Br(M)

)
r∈Z .

Note that in this context, elements of Zr(M) are precisely the closed r-forms on M .
Those belonging to Br(M) are the exact r-forms onM . This means that two closed forms
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54 3. Poincaré Duality

are cohomologous when their difference is exact. Thus Hr
dR(M) measures the exactness

of closed r-forms on M .

Clearly, Hr
dR(M) = 0 for r < 0 and r > m. Thus, during results and manipulations

involving the cohomology groups Hr
dR(M), the ones that matter the most are those

having dimension 0 ≤ r ≤ m.

A more concrete explanation of role played by the de Rham cohomology is as follows.
From basic multivariable calculus we know that, on a simply connected (path-connected
and without “holes”) open set U ⊆ R3, a smooth vector field F = (P,Q,R) : U → R3 is
conservative if, and only if, rotF = 0 (irrotational). However, this might not hold if U is
not simply connected, as we can see by taking U = R3 − (z-axis) and

F (x, y, z) =

(
−y

x2 + y2
,

x

x2 + y2
, z

)
,

that is, rotF = 0 and there is no function f : U → R such that F = grad f . Equivalently,
ωF = Pdx + Qdy + Rdz is a closed 1-form on U which is not exact. The de Rham
cohomology group H1

dR(U) measures precisely the extent to which this characterization
of irrotational fields fails. In other words, one searches for “holes” in the space M by
looking for closed forms which are not exact.

Remark 3.1. Henceforth, whenever we write Hr(M), keep in mind we mean the rth de
Rham cohomology group Hr

dR(M).

Example 3.2. IfM is a connected surface, then H0(M) ≈ R. Indeed, we have B0(M) =
{0} and Example 2.35 shows that

Z0(M) = {f :M → R ; df = 0}
= {f :M → R ; f is constant} .

Thus H0(M) = Z0(M)/B0(M) ≈ Z0(M) ≈ R. In particular, if N is a contractible
surface, then H0(M) ≈ R, since M is path-connected.

Since Hr(M) = {0} whenever closed forms ω ∈ Ωr(M) are also exact, Theorem 2.37
implies Poincaré’s Lemma.

Theorem 3.3 (Poincaré’s Lemma). For every r ≥ 1 the rth de Rham cohomology group
of a contractible surface is trivial.

Example 3.4. An immediate consequence of Poincaré’s Lemma is that, for r ≥ 1, the
rth de Rham cohomology group of an open star-shaped set in Rm is trivial.

From Theorem 2.36(4), it follows that there exists a contravariant functor, called
pullback, from the category of smooth surfaces and smooth maps to the category of
cochain complexes and cochain maps which assings to a surface M its de Rham complex
and to each smooth map f : M → N its induced cochain map f∗ : Ω∗(N) → Ω∗(M)
given by

f∗ = (f∗r : Ωr(N) → Ωr(M))r∈Z .
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Again from Theorem 2.36(4) (and Theorem A.5), it follows that the pullback of r-
forms f∗r , where f : M → N , induces a homomorphism at the cohomology level given
by f∗∗r ([ω]) = [f∗r ω]. Therefore, the morphism of degree 0 between graded R-modules
H(f) = f∗∗ corresponding to f∗ : Ω∗(N) → Ω∗(M) via the cohomology functor is
precisely

H(f) = (f∗∗r : Hr
dR(N) → Hr

dR(M))r∈Z .

The composite of the two functors above is a contravariant functor T from the cate-
gory of smooth surfaces and smooth maps to the category of graded R-modules which as-
signs to each surface its de Rham cohomology group and to each smooth map f :M → N
its induced morphism T (f) = f∗∗ : HdR(N) → HdR(M). Thus, diffeomorphic surfaces
have isomorphic de Rham cohomology groups. Nevertheless, a stronger result is valid,
namely, de Rham cohomology is homotopy invariant. Put precisely:

Theorem 3.5. There is a contravariant functor from the homotopy category of smooth
surfaces and continuous maps to the category of graded R-modules and morphisms of
degree 0 which assigns to each surface its cohomology group and to a homotopy class [f ]
its induced morphism f∗∗.

Proof. Let f : M → N be a continuous map between smooth surfaces. From the fisrt
item in Theorem 2.21, we define a morphism f∗∗ : HdR(N) → HdR(M) by f∗∗ = g∗∗

for some smooth map g : M → N such that f ≃ g. From the second item in the
same theorem and the argument in the proof of Theorem 2.37 we see that, for any two
homotopic smooth maps ξ, ζ : M → N and ω ∈ Zr(N), the difference ξ∗rω − ζ∗rω is
exact. Thus ξ∗∗ = ζ∗∗. Therefore, f∗∗ is well-defined, since, by the transitivity of the
homotopy relation, it independs on the choice of g. Again by transitivity, one sees that
(g ◦ f)∗∗ = f∗∗ ◦ g∗∗, and f∗∗ = g∗∗ in case f ≃ g.

Q.E.D.

Remark 3.6. From now on, to simplify notation, we will write f∗ instead of f∗∗.

This theorem yields another proof of Poincaré’s Lemma, since contractible spaces
have the same homotopy type as a one-point space ([14, p. 26]).

Example 3.7. Let M and N be surfaces, where N is contractible. Since M × N and
M have the same homotopy type (Example 2.25), it follows from Theorem 3.5 that
HdR(M ×N) = HdR(M).

Example 3.8. From Example 3.2 we see that H0(S1) ≈ R. Also, it is obvious that
Hr(S1) = {0} for r > 1. It can be shown ([7, p. 25]) that H1(R2 − {0}) ≈ R. Thus,
Theorem 3.5 and Example 2.22 imply H1(S1) ≈ R.

Every surface M admits a decomposition M = U ∪ V , where U and V are open sets
of M . Such decomposition yields a short exact sequence of cochain complexes

0 Ω∗(M) Ω∗(U)⊕ Ω∗(V ) Ω∗(U ∩ V ) 0 ,
f g
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where

fr(ω) = (ω|U , ω|V ) and gr(α, β) = α|U∩V − β|U∩V .

Using in Theorem 2.36(4), it is easy to verify that f and g are cochain maps. To see
that this sequence is exact, note that it follows immediately from the definitions of fr
and gr that fr is injective and im fr = ker gr for every r. As to the surjectivity of gr,
we take (Theorem 2.11) a partition of unity ξ1 + ξ2 strictly subordinated to the cover
M = U ∪ V . Thus supp ξ1 ⊆ U and supp ξ2 ⊆ V . We define, for ω ∈ Ωr(U ∩ V ), two
r-forms ω1 ∈ Ωr(U) and ω2 ∈ Ωr(V ) by

ω1 =

{
ξ2ω on U ∩ V
0 on U − (U ∩ V )

ω2 =

{
−ξ1ω on U ∩ V
0 on V − (U ∩ V )

.

From this, it follows that g(ω1, ω2) = ω1|U∩V − ω2|U∩V = ξ2ω + ξ1ω = ω, as we
wanted to show.

Therefore, the short exact sequence above gives rise, via Theorem 1.17, to a long
exact sequence in cohomology

· · · Hr(M) Hr(U)⊕Hr(V ) Hr(U ∩ V ) Hr+1(M) · · ·
∆∗

r−1 f∗r g∗r ∆∗
r

f∗r+1

where

f∗r [ω] = ([ω|U ], [ω|V ]) and g∗r ([α], [β]) = [α|U∩V − β|U∩V ] .

As to the connecting homomorphism ∆∗
r (Lemma 1.16), for ω ∈ Zr(U ∩ V ), since

gr is onto, we have ω = gr(α, β) for some α ∈ Ωr(U) and β ∈ Ωr(V ). Thus 0 = drω =
(dα)|U∩V − (dβ)|U∩V . Therefore, ∆

∗
r [ω] = [ω′], where ω′ ∈ Zr+1(M) is such that ω′|U =

drα and ω′|V = drβ.

The long exact sequence above is called the Mayer-Vietoris sequence associated to
the decomposition M = U ∪ V . It allows one to obtain

Proposition 3.1. If M is a surface of finite type, then HdR(M) is finitely generated. In
particular, the same holds for every compact surface M .

Proof. Let M be a surface of finite type. We argue by induction on n, the cardinality of
the finite simple cover, in order to show that each Hr(M) is finite dimensional. The case
n = 1 follows from Example 3.2 and Poincaré’s Lemma (Theorem 3.3). Now suppose

the result holds for some n ∈ N and let M =
⋃n+1
k=1 Uk be a finite simple cover. Set

V =
⋃n
k=1 Uk so that M = V ∪ Un+1. The surface V ∩ Un+1 is of finite type, since

V ∩Un+1 =
⋃n
k=1(Uk ∩Un+1) is a finite simple cover. Thus, by the induction hypothesis,

HdR(V ∩ Un+1) is finitely generated. The Mayer-Vietoris sequence of the decomposition
contains an exact three-term sequence

Hr−1(V ∩ Un+1) Hr(M) Hr(V )⊕Hr(Un+1)
∆∗

r−1 f∗r .

The second morphism yields a short exact sequence

0 ker f∗r Hr(M) im f∗r 0 ,
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which splits (Example 1.15). Thus Hr(M) ≈ ker f∗r ⊕ im f∗r . Since ker f∗r = im∆∗
r−1 and

dim im∆∗
r−1 < ∞, we conclude that dimHr(M) is finite, which proves the induction

step.

Q.E.D.

In case HdR(M) is finitely generated, we define the Betti numbers of M to be the
Betti numbers of HdR(M) and the Euler-Poincaré characteristic1 χ(M) of M to be
χ(HdR(M)).

The last result tells us that it is possible to compute χ(M) whenever M is of finite
type, since

(3.1) χ(M) =

m∑
r=0

(−1)rbr =
m∑
r=0

(−1)r dimHr(M) .

However, if M is a compact surface, Poincaré duality (Theorem 3.17) yields a relation
between the Betti numbers of M , allowing one to compute χ(M) for certain classes of
surfaces, as we shall see in § 3.4.

Example 3.9. LetM be a surface such thatHdR(M) is finitely generated. IfN is another
surface with the same homotopy type asM , then χ(M) = χ(N). This follows immediately
from Theorem 3.5. Thus, (3.1) and Proposition 3.1 tells us the Euler characteristic is a
topological invariant for compact surfaces.

Example 3.10. Let m ≥ 2. Using the Mayer-Vietoris sequence, Theorem 3.5 and a
decomposition Sm = U∪V , where U and V are contractible open such that U∩V ≈ Sm−1

in the homotopy category2, one can generalize Example 3.8 by proving thatHm(Sm) ≈ R
for every m > 0 and Hr(Sm) ≈ {0} for 0 < r < m. (See [7, p. 32].)

Example 3.11. Upon the identificationCn+1 ≈ R2n+2, we can write points z ∈ S2n+1 as

z = (z1, . . . , zn+1), where zi ∈ C and
∑

|zi|2 = 1. Consider the map f : S2n+1 → R2(n+1)2

given by f(z) = [ziz̄j ] ((n+1)× (n+1) matrix with complex entries). The n-dimensional
complex projective space CPn is defined to be the image f(S2n+1). Proceding along the
lines in [11, p. 260], one shows that CPn is a compact, connected, smooth surface of

dimension 2n in R2(n+1)2 . For 0 ≤ r ≤ 2n, one shows that

Hr(CPn) =

{
R ; r ≡ 0 mod 2

0 ; r ≡ 1 mod 2
.

In order to compute these groups, one needs to extend de Rham cohomology to compact
sets in Euclidean spaces, which will not be done here. The details can be seen in [7, p.73].

1Actually, the Euler-Poincaré characteristic is defined in the more general context of topological spaces by
means of polyhedra. For further details see [5].

2For instance U = Sm−{north pole} and U = Sm−{south pole}. Then U ∩V = Sm −{p, q} and Sm−1 have

the same homotopy type.(See Example 2.24.)
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3.2. Compactly Supported de Rham Cohomology

From the de Rham complex Ω∗(M), we obtain a subcomplex Ω∗
c(M) by restricting each

dr to Ωrc(M) (§ 2.2), namely,

· · · 0 Ω0
c(M) Ω1

c(M) · · · Ωmc (M) 0 · · ·d0 d1 dm−1 dm

The cohomology group of such cochain complex is called compactly supported de
Rham cohomology group, denoted by

HdR,c(M) = (Hr
dR,c(M) = Zrc (M)/Br

c (M))r∈Z .

To avoid such a heavy notation, we write Hc(M) (resp. Hr
c (M)) instead of HdR,c(M)

(resp. Hr
dR,c(M)).

For a compact surface M , the de Rham groups Hc(M) and HdR(M) coincide, since
closed sets are compact in compact spaces. In case M is not compact, such groups can
be pretty different from each other. For instance, if, in addition, M is connected we see3

from Example 3.2 that H0
dR(M) ≈ R, but H0

c (M) = {0}, since Z0
c (M) = {0} (a constant

function on M having compact support must be identically zero).

The next result concerns compactly supported cohomology of connected oriented
surfaces. The proof is rather lenghty, thus we shall not include it here. (See [7, p. 42].)

Proposition 3.2. Let M be an m-dimensional connected oriented surface. The integra-
tion of forms [ω] 7→

∫
M ω defines a linear isomorphism between Hm

c (M) and R.

From properties of proper maps dicussed in § 2.2, it follows that the algebraic con-
travariant functor T from last section (discussion preceeding Theorem 3.5) restrics to a
functor from the category of smooth surfaces and proper smooth maps which assings to
a surface its compactly supported de Rham cohomology group and to a proper smooth
map f : M → N its induced morphism T (f) = f∗∗ : HdR,c(N) → HdR,c(M). In this
case, we also write f∗ instead of f∗∗.

From the above, it follows that if M and N are (properly) diffeomorphic surfaces,
thenHdR,c(N) andHdR,c(M) are isomorphic. However, compactly supported cohomology
is not homotopy invariant, as shown by the next result.

Proposition 3.3. If m ≥ 1, then

Hr
c (R

m) =

{
{0} ; 0 ≤ r < m

R ; r = m
.

Proof. As we have seen above, H0
c (M) = {0} for non-compact connected surfaces. The

case r = m comes from Proposition 3.2. We will prove the case 0 < r < m. Since
the stereographic projection φ : Sm − {p} → Rm (p ∈ Sm is the north pole) is a proper

3Compactness does not play a role here.



3.2. Compactly Supported de Rham Cohomology 59

diffeomorphism, it suffices to prove thatHr
c (S

m−{p}) = {0}. Thus, let ω ∈ Zrc (S
m−{p}).

Since ωSm ∈ Ωrc(S
m) and Hr(Sm) = {0} (Example 3.10), we have

ωSm = dα

for some α ∈ Ωr−1(Sm).

We must find γ ∈ Ωr−1
c (Sm − {p}) so that ω = dγ. First, Proposition 2.5 applied

to A = Sm − suppω tells us there exists an open set p ∈ V ⊆ Sm such that V is
diffeomorphic to Rm and ωSm |V = 0. We have two cases:

1. If r = 1, then α ∈ Ω0(Sm) is just a C∞ function on Sm. Since (dα)|V = ωSm |V =
0 and V is connected, it follows that α is constant on U , say α = c. Thus, defining
β = α− c ∈ Ω0(Sm), we see that suppβ ⊆ (Sm−{p})−V ⊆ Sm−V . Therefore
β|Sm−{p} ∈ Ω0

c(S
m − {p}) and dβ|Sm−{p} = (dα)|Sm−{p} = ω.

2. Since ωSm = dα, we have d(α|V ) = ωSm |V = 0, whence α|V ∈ Zr−1(V ). From
Theorem 3.3 and the fact that V and Rm are diffeomorphic, it follows that
Hr−1(V ) ≈ Hr−1(Rm) ≈ {0}. Thus α|V is exact, say α|V = dτ for some τ ∈
Ωr−2(V ). Applying Proposition 2.2 to V and Sm, we see there exists a function
ξ : Sm → [0, 1] such that supp ξ ⊆ V is compact and ξ = 1 on some open set
p ∈ U ⊆ V . Thus ξτ ∈ Ωr−2

c (V ). Defining σ = (ξτ)Sm ∈ Ωr−2
c (Sm), we have β =

α− dσ ∈ Ωr−1(Sm). Since U ⊆ V , β|U = α|U − dσ|U = α|U − dτ |U = 0, whence
suppβ ⊆ Sm − U , that is, β ∈ Ωr−1

c (Sm). Lastly, dβ|Sm−{p} = dα|Sm−{p} = ω.

Q.E.D.

The following result about cohomology will be needed in § 3.3.

Proposition 3.4. Let M be a surface. If M =
⋃
λ∈L Uλ is a disjoint union of non-empty

open sets Uλ ⊆M , then the following hold:

1. HdR(M) ≈
∏
λ∈L

HdR(Uλ) .

2. HdR,c(M) ≈
⊕
λ∈L

HdR,c(Uλ) .

3. Hom(HdR,c(M),R) ≈
∏
λ∈L

Hom(HdR,c(Uλ),R) .

Proof. To prove the first two items, it is enough to see that Ω∗(M) ≈
∏

Ω∗(Uλ) and
Ω∗
c(M) ≈

⊕
Ω∗
c(Uλ). We define cochain maps f : Ω∗(M) →

∏
Ω∗(Uλ) and g : Ω∗

c(M) →⊕
Ω∗
c(Uλ), where

Ωr(M)
fr−→

∏
λ∈L

Ωr(Uλ)

ω 7−→ (i∗rω)λ∈L

Ωrc(M)
gr−→

⊕
λ∈L

Ωrc(Uλ)

ω 7−→ (i∗rω)λ∈L
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The respective inverse maps are p :
∏

Ω∗(Uλ) → Ω∗(M) and q :
⊕

Ω∗
c(Uλ) → Ω∗

c(M),
given by ∏

λ∈L
Ωr(Uλ)

pr−→ Ωr(M)

(ωλ)λ∈L 7−→
∑
ωλ

⊕
λ∈L

Ωrc(Uλ)
qr−→ Ωrc(M)

(ωλ)λ∈L 7−→
∑

(ωλ)M

Note that pr is well-defined, since M =
⋃
λ∈L Uλ is a disjoint union, which makes

(suppωλ)λ∈L into a locally finite family (see Remark 2.38). As to the third item, it
follows from item 2. and Proposition 1.4. Indeed,(

Hom(HdR,c(M),R)
)r

= Hom(Hr
c (M),R)

≈ Hom
(⊕

Hr
c (Uλ),R

)
≈

∏
Hom(Hr

c (Uλ),R)

=
(∏

Hom(HdR,c(Uλ),R)
)r

Q.E.D.

As in last section, a decomposition M = U ∪ V yields , in a similar fashion, a short
exact sequence of cochain complexes

0 Ω∗
c(U ∩ V ) Ω∗

c(U)⊕ Ω∗
c(V ) Ω∗

c(M) 0 ,
f g

but in this case we use zero extensions of forms intead of restrictions, that is,

fr(ω) = (ωU , ωV ) and gr(α, β) = αM − βM .

From the definition of zero extension of forms and some easy verifications, it follows
that the short sequence above is exact. To see that each gr is surjective, one uses similar
arguments to those used in the last section. Indeed, given ω ∈ Ωrc(M), we take a partition
of unity ξ1 + ξ2 = 1 strictly subordidated to M = U ∪ V so that supp ξ1 ⊆ U and
supp ξ2 ⊆ V . Setting α = (ξ1ω)|U and β = −(ξ2ω)|V , it follows that α ∈ Ωrc(U) and
β ∈ Ωrc(V ). Thefore, gr(α, β) = (ξ1ω)|U + (ξ2ω)|V = ω (to see this consider points in
U ∩ V , U − V and V − U). This shows that gr is onto.

Again, from Theorem 1.17, we obtain the Mayer-Vietoris sequence with compact
supports:

· · · Hr
c (U ∩ V ) Hr

c (U)⊕Hr
c (V ) Hr

c (M) Hr+1
c (U ∩ V ) · · ·

∂∗r−1 f∗r g∗r ∂∗r f∗r+1

where

f∗r ([ω]) = ([ωU ], [ωV ]) and g∗r ([α], [β]) = [αM − βM ] .

In order to see how ∂∗r works, let us consider [ω] ∈ Hr
c (M). From the expression for

the connecting homomorphism given in Lemma 1.16, it follows that

∂∗r [ω] = [(dα)|U∩V ] = [(dβ)|U∩V ]

for some (α, β) ∈ Ωrc(U)⊕ Ωrc(V ) such that ω = αM − βM .
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Now, we apply the contravariant Hom(·,R) (and Proposition 1.4) to the Mayer-
Vietoris sequence above and obtain a long sequence4

· · · Hr+1
c (U ∩ V )∗ Hr

c (M)∗ Hr
c (U)∗ ⊕Hr

c (V )∗ Hr
c (U ∩ V )∗ · · ·

∂#r+1 g#r f#r

which is exact by Proposition 1.3.

The dual maps above act as follows. For (φ,ψ) ∈ Hr
c (U)∗ ⊕ Hr

c (V )∗ and [ω] ∈
Hr
c (U ∩ V ),

f#r (φ,ψ) · [ω] = φ[ωU ]− ψ[ωV ] .

Given φ ∈ Hr
c (M)∗, g#r φ = (ξ, ζ), where (ξ, ζ) ∈ Hr

c (U)∗ ⊕Hr
c (V )∗, is such that

ξ[α] = φ[αM ] and ζ[β] = φ[βM ] ,

for α ∈ Hr
c (U) and β ∈ Hr

c (V ).

Lastly, for every φ ∈ Hr+1
c (U ∩ V )∗ and [ω] ∈ Hr

c (M),

(3.2) (∂#r+1φ) · [ω] = φ(∂∗[ω]) = φ[(dα)|U∩V ] = φ[(dβ)|U∩V ] ,

for some (α, β) ∈ Ωrc(U)⊕ Ωrc(V ) such that ω = αM − βM .

3.3. Poincaré Duality

This section is entirely devoted to the proof of the main result, namely, the Poincaré
Duality theorem (Theorem 3.17), which states that there is an isomorphism (to be defined
in a moment)

(3.3) Hr
dR(M) ≈ Hm−r

dR,c (M)∗ ,

whenever M is an oriented m-dimensional (smooth) surface and 0 ≤ r ≤ m. Clearly,
(3.3) holds for r < 0 and r > m. So we shall focus on the case 0 ≤ r ≤ m.

The proof of (3.3) is rather lengthy so we break it into five lemmas. Also, it is mostly of
algebraic nature, since its essence is a relation (Lemma 3.12) between the Mayer-Vietoris
sequences of a decomposition M = U ∪ V derived in § 3.1 and § 3.2.

Let M be an oriented m-dimensional (smooth) surface and 0 ≤ r ≤ m. The exterior
product and integration of forms yield an R-bilinear map

(3.4) PM = P rM : Hr(M)×Hm−r
c (M) → R

given by

([α], [β]) 7→
∫
M
α ∧β ,

since α ∧β is an m-form on M and suppα ∧β ⊆ suppα ∩ suppβ. This bilinear form
is well-defined. Indeed, if ([α1], [β1]), ([α2], [β2]) ∈ Hr(M) × Hm−r

c (M) are such that

4We will continue to use the shorter notations E∗ = Hom(E,R) and f# = Hom(f,R).
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α1 = α2 + dᾱ and β1 = β2 + dβ̄, then∫
M
α1 ∧β1 =

∫
M
(α2 + dᾱ) ∧ (β2 + dβ̄)

=

∫
M
α2 ∧β2 +

∫
M
dᾱ ∧β2 +

∫
M
α2 ∧dβ̄ +

∫
M
dᾱ ∧dβ̄

=

∫
M
α2 ∧β2 ,

by Corollary 2.40.1.

The R-bilinear form P rM in (3.4) corresponds to a linear map

DM : Hr(M) → Hm−r
c (M)∗ (0 ≤ r ≤ m) ,

called Poincaré duality map, defined by

DM [α] =

∫
M
α ∧ · : Hm−r

c (M) → R ,

for every [α] ∈ Hr(M). Thus, Poincaré’s duality is stated as

If M is an oriented surface, then DM is an isomorphism.

This is what we shall prove. Henceforth, whenever we say that Poincaré duality holds
for some surface M , we mean that DM is an isomorphism.

We now proceed to prove our first lemma.

Lemma 3.12. Let M be an oriented m-dimensional surface. If M = U ∪ V , where
U, V ⊆M are open, then the diagram below commutes.

Hr(U)⊕Hr(V ) Hm−r
c (U)∗ ⊕Hm−r

c (V )∗

Hr(U ∩ V ) Hm−r
c (U ∩ V )∗

Hr+1(M) Hm−r−1
c (M)∗

Hr+1(U)⊕Hr+1(V ) Hm−r−1
c (U)∗ ⊕Hm−r−1

c (V )∗

Hr+1(U ∩ V ) Hm−r−1
c (U ∩ V )∗

g∗r

DU⊕−DV

f#

(−1)r+1∆∗
r

DU∩V

∂#

f∗r+1

DM

g#

g∗r+1

DU⊕−DV

f#

DU∩V

Proof. Recalling the definitions in § 3.1 and § 3.2, the first and the third rectangles are
easily seen to commute. The one that poses a problem is the second one. In order to
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prove its commutativity, let [ω] ∈ Hr(U ∩ V ) be such that ω = α|U∩V − β|U∩V , where
α ∈ Ωr(U) and β ∈ Ωr(V ). As we have already seen in § 3.1,

(−1)r+1∆∗
r [ω] = [(−1)r+1σ] ∈ Hr+1(M) ,

where σ|U = dα, σ|V = dβ and σ|U∩V = dα|U∩V = dβ|U∩V . Thus, for [τ ] ∈ Hm−r−1
c (M),

we see that

(3.5) DM (−1)r+1∆∗
r [ω] · [τ ] = (−1)r+1

∫
M
σ ∧τ .

On the other hand, from (3.2), it follows that ∂#DU∩V [ω] · [τ ] = DU∩V [ω](∂
∗[τ ]), that

is,

(3.6) ∂#DU∩V [ω] · [τ ] =
∫
U∩V

ω ∧ (dᾱ)|U∩V ,

where τ = ᾱM − β̄M , for some ᾱ ∈ Ωm−r−1
c (U) and β̄ ∈ Ωm−r−1

c (V ) such that

dᾱ|U∩V = dβ̄|U∩V .

Also, note that supp dᾱ, supp dβ̄ ⊆ U ∩V , since 0 = dτ = dᾱ on U −V and 0 = dτ = dβ̄
on V −U ; this fact will come in handy. Now, we have to show that the integrals in (3.5)
and (3.6) are the same. Indeed, from Theorem 2.39(4), we have

(−1)r+1

∫
M
σ ∧τ = (−1)r+1

∫
M
σ ∧ ᾱM + (−1)r+2

∫
M
σ ∧ β̄M

= (−1)r+1

∫
U
σ ∧ ᾱ+ (−1)r+2

∫
V
σ ∧ β̄

= (−1)r+1

∫
U
dα ∧ ᾱ+ (−1)r+2

∫
V
dβ ∧ β̄

From Theorem 2.36(3) and Corollary 2.40.1, it follows that

(−1)r+1

∫
U
dα ∧ ᾱ =

∫
U
α ∧dᾱ and (−1)r+2

∫
V
dβ ∧ β̄ = −

∫
V
β ∧dβ̄ .

Thus

(−1)r+1

∫
M
σ ∧τ =

∫
U
α ∧dᾱ−

∫
V
β ∧dβ̄ ,

and since supp dᾱ, supp dβ̄ ⊆ U ∩ V , Theorem 2.39(4) gives us

(−1)r+1

∫
M
σ ∧τ =

∫
U∩V

(α ∧dᾱ)|U∩V −
∫
U∩V

(β ∧dβ̄)|U∩V

=

∫
U∩V

α|U∩V ∧dᾱ|U∩V −
∫
U∩V

β|U∩V ∧dβ̄|U∩V

=

∫
U∩V

α|U∩V ∧dᾱ|U∩V −
∫
U∩V

β|U∩V ∧dᾱ|U∩V

=

∫
U∩V

(α|U∩V − β|U∩V ) ∧dᾱ|U∩V

=

∫
U∩V

ω ∧dᾱ|U∩V
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Q.E.D.

Lemma 3.13. Let M be an m-dimensional surface. If M =
⋃
λ∈L Uλ is a disjoint union

of non-empty open sets Uλ ⊆ M and Poincaré duality holds for every Uλ, then it also
holds for M , that is, DM is an isomorphism.

Proof. If each DUλ
: Hr(Uλ) → Hm−r

c (Uλ)
∗ is an isomorphism, then the same holds for

D× :
∏
Hr(Uλ) →

∏
Hm−r
c (Uλ)

∗, where

D×([ωλ])λ∈L = (DUλ
[ωλ])λ∈L .

From Proposition 3.4(1) and (3) we have a commutative diagram

Hr(M)
∏
λ∈LH

r(Uλ)

Hm−r
c (M)∗

(⊕
λ∈LH

m−r
c (Uλ)

)∗ ∏
λ∈LH

m−r
c (Uλ)

∗

fr

DM D×

q#m−r ξ

where fr and q#m−r are isomorphisms coming from Proposition 3.4 and ξ (also an iso-
morphism) comes from Proposition 1.4. For [ω] ∈ Hr(M) we have

D×fr[ω] = D×([i∗λω])λ∈L = (DUλ
[i∗λω])λ∈L ∈

∏
λ∈L

Hm−r
c (Uλ)

∗ ,

where iλ : Uλ ↪→M is the inclusion map, and for each λ ∈ L and [α] ∈ Hm−r
c (Uλ),

(3.7) DUλ
[i∗λω] · [α] =

∫
Uλ

i∗λω ∧α

Denoting by jλ the natural inclusion Hr
c (Uλ) ↪→

⊕
Hr
c (Uµ), we have

ξ(q#m−r(DM [ω])) = ( q#m−r(DM [ω]) ◦ jλ )λ∈L ∈
∏
λ∈L

Hm−r
c (Uλ)

∗

Since jλ[α] is a family of classes which are null except at the position λ, it follows that,
for each λ ∈ L and [α] ∈ Hm−r

c (Uλ),

(q#m−r(DM [ω]) ◦ jλ)[α] = (q#m−r(DM [ω]) · jλ[α]
= DM [ω] · qm−r(jλ[α])

= DM [ω] · [αM ]

=

∫
M
ω ∧αM .

Note that suppω ∧αM ⊆ Uλ and i∗λ(αM ) = α. Thus, from 3.7 and Proposition 2.39(4)
we see that

(q#m−r(DM [ω]) ◦ jλ)[α] =
∫
M
ω ∧αM =

∫
Uλ

i∗λ(ω ∧αM ) =

∫
Uλ

i∗λω ∧α = DUλ
[i∗λω] · [α] .

Q.E.D.
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Lemma 3.14. Let M be a surface and B a basis for the topology of M which is closed
under finite intersections. If Poincaré duality holds for each U ∈ B, then it also holds
for M .

Proof. By hypothesis we see that DU , DV and DU∩V are isomorphisms. Thus, from
Lemma 3.12 and the Five Lemma (Theorem 1.18), it follows that DU∩V is also an iso-
morphism. Arguing by induction, one easily verifies that the same holds for arbitrary
finite intersections of open sets belonging to B. Now, from Proposition 2.1, we take a
decomposition M =

⋃
i∈NAi, where each Ai is a finite union of open sets belonging to B

such that Ai ∩Aj = ∅ for every j ≥ i+2. In particular, DAi is an isomorphism for every
i. Setting

U =
⋃
A2i and V =

⋃
A2i−1 ,

we get

M = U ∪ V and U ∩ V =
⋃
Ai ∩Ai+1 .

Note that each Ai∩Ai+1 is a finite union of sets belonging to B, which implies that each
DAi∩Ai+1 is an isomorphism. Since Ai ∩ Aj = ∅ for every j ≥ i+ 2, it follows that U , V
and U ∩ V are disjoint unions. Then, by Lemma 3.13, the maps DU , DV and DU∩V are
isomorphisms. Finally, it follows from Lemma 3.12 and the Five Lemma (Theorem 1.18)
that DM = DU∪V .

Q.E.D.

Lemma 3.15. Let 0 ≤ r ≤ m and f : M → N be a proper diffeomorphism between
surfaces which is also orientation-preserving. Then the following diagram commutes.

Hr(M) Hr(N)

Hm−r
c (M)∗ Hm−r

c (N)∗

DM

f∗

DN

f#

In particular, if DN is an isomorphism, then the same holds for DM .

Proof. Let [α] ∈ Hr(N). Recall that f∗[α] = [f∗α] and f#φ[ω] = φ[f∗ω] for φ ∈
Hm−r
c (M)∗ and [ω] ∈ Hm−r

c (N). Thus, for every [β] ∈ Hm−r
c (N), we have

f#DM [f∗α] · [β] = DM [f∗α] · [f∗β] =
∫
M
f∗α ∧f∗β =

∫
M
f∗(α ∧β) .

It follows from Theorem 2.39(3) that

f#DM [f∗α] · [β] =
∫
M
f∗(α ∧β) =

∫
N
α ∧β = DN [α] · [β] .

Q.E.D.

Lemma 3.16. Poincaré duality holds for Rm.
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Proof. From Example 3.2, Theorem 3.3 and Proposition 3.3, we have

Hr(Rm) =

{
{0} ; 0 < r ≤ m

R ; r = 0
and Hm−r

c (Rm) =

{
{0} ; 0 < r ≤ m

R ; r = 0
.

Thus, we only need to check that DRm : H0(Rm) → Hm
c (Rm)∗ is an isomorphism.

To do so, it suffices to see that DRm is not identically zero, since both spaces have
dimension 1 over R (Proposition 3.2). Let α : Rm → R be the 0-form α ≡ 1 and
β = f(x)dx1 ∧ · · · ∧dxm ∈ Ωrc(R

m), where f ∈ C∞
c (Rm) comes from Proposition A.1

with K = B[0; 2]. Then

DRm [α] · [β] =
∫
Rm

α ∧β =

∫
Rm

β =

∫
K
f ̸= 0 .

Q.E.D.

Finally, using the results above, we present the proof of the Poincaré duality theorem.

Theorem 3.17 (Poincaré Duality). If M is an oriented m-dimensional surface, then

Hr(M) ≈ Hm−r
c (M)∗

and, for 0 ≤ r ≤ m, this isomorphism is given by the map

DM : Hr(M) → Hm−r
c (M)∗ ,

where

DM [α] · [β] =
∫
M
α ∧β

for [α] ∈ Hr(M) and [β] ∈ Hm−r
c (M).

Proof. The work is essentially done. We have two cases:

Case #1: Let M ⊆ Rm be an open set (m-dimensional surface). Denote by B a basis
for the topology of M consisting of open rectangles C ⊆ Rm with sides parallel to the
coordinate axes. Each C ∈ B is (properly) diffeomorphic to Rm (Example 2.18). Thus
Lemmas 3.15 and 3.16 tell us that DC is an isomorphism for every C ∈ B. Also, note
that C ∩ C ′ ∈ B for any C,C ′ ∈ B. Therefore, by Lemma 3.14, DM is an isormorphism.

Case #2: Now, for the general case in which M ⊆ Rn is an oriented m-dimensional
surface, we consider B to be a basis for the topology ofM consisting of open sets U ⊆M
which are diffeomorphic to some open subset of Rm (Example 2.9). By the previous case,
we see that DU is an isomorphism for each U ⊆M . Also, note that U ∩ V ∈ B for every
U, V ∈ B. Thus, from Lemma 3.14, DM is an isomorphism.

Q.E.D.
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3.4. Applications

The present section was based on [2, 3, 13]. We present some applications of Poincaré du-
ality (Theorem 3.17), starting off with some consequences regarding cohomology groups
and Betti numbers. Right after, the first subsection deals with applications involving the
Euler-Poincaré characteristic and signature of surfaces; we also present an example of
an irreversible surface, as prosmised at end of Subsection 2.1.2. As to the second, the
connection between Poincaré duality and Hodge decomposition is discussed.

First, observe that if M is an oriented surface whose de Rham cohomology group
HdR,c(M) is finitely generated, then basic linear algebra tells us that (Hr

c (M))∗ ≈ Hr
c (M)

for every r. Thus, the isomorphism in Theorem 3.17 yields

Hr(M) ≈ Hm−r
c (M) .

As we know, if M is compact, then Hr
c (M) = Hr(M). Therefore, by Proposition 3.1,

Hr(M) ≈ Hm−r(M)

and we have the following

Corollary 3.17.1. If M is a compact oriented m-dimensional surface, then

br = bm−r 0 ≤ r ≤ m,

where br is the rth Betti number of M .

Poincaré first stated his duality result in his 1895 paper “Analysis Situs”. The state-
ment given by Poincaré was pretty much the same as in Corollary 3.17.1, but instead of
“m-dimensional surface” he considered an m-dimensional topological manifold5 together
with some additional structure, there was no differential structure involved.

More consequences of Poincaré duality are given below.

Corollary 3.17.2. Let M be an oriented, connected, m-dimensional surface. If M is
not compact, then Hm(M) = {0}.

Proof. At the begining of § 3.2 we showed that H0
c (M) = {0} if M is non-compact.

From Theorem 3.17, it follows that

Hm(M) ≈ H0
c (M) = {0} .

Q.E.D.

Corollary 3.17.3. Let M be an oriented m-dimensional surface. If HdR,c(M) is finitely
generated, then

Hr+n
c (M ×Rn) ≈ Hr

c (M) (0 ≤ r ≤ m) .

5A topological n-manifold is a topological spaceX such that each point has open neighborhood homeomorphic

to some open set in Rn. Also, see the footnote in p. 24.
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Proof. SinceRn is contractible, we see from Example 3.7 thatHdR(M×Rn) ≈ HdR(M).
Since HdR,c(M) is finitely generated, we have (Hr

c (M))∗ ≈ Hr
c (M) for every r. It follows

from Theorem 3.17 that

(Hr+n
c (M ×Rn))∗ ≈ Hm+n−(r+n)(M ×Rn)

= Hm−r(M ×Rn)

≈ Hm−r(M)

= Hr
c (M)

Thus dim(Hr+n
c (M ×Rn))∗ <∞, which implies dimHr+n

c (M ×Rn) <∞6. Therefore

Hr+n
c (M ×Rn) ≈ (Hr+n

c (M ×Rn))∗ ≈ Hr
c (M) .

Q.E.D.

Corollary 3.17.4. Compact oriented surfaces of positive dimension are not contractible.

Proof. Let M be compact m-dimensional surface with m > 0. Write M =
⋃
λ∈LCλ,

where (Cλ)λ∈L is the family of connected components of M . Example 2.6 tells us that
each Cλ is open in M . Thus, Proposition 3.4 together with Example 3.2 yields

H0(M) ≈
∏
λ∈L

H0(Cλ) =
∏
λ∈L

R .

Therefore, H0(M) ̸= {0}. It follows from Poincaré duality and the compactness of M
that

Hm(M) ≈ H0
c (M) = H0(M) ̸= {0} .

Finally, Poincaré’s lemma (Theorem 3.3) implies that M is not contractible.

Q.E.D.

3.4.1. Euler-Poincaré Characteristic and Signature

As to the Euler characteristic, Poincaré duality allows one to compute it modulo 2
for compact oriented surface of even dimension, as shown by the next result.

Corollary 3.17.5. If M is a compact oriented 2m-dimensional surface, then

χ(M) ≡ bm mod 2 .

6Given a real vector space E, there is always a canonical linear injection E ↪→ E∗∗.
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Proof. This is a direct application of Corollary 3.17.1:

χ(M) =

2m∑
r=0

(−1)rbr

= (−1)mbm +

m−1∑
r=0

(−1)rbr +

2m∑
r=m+1

(−1)rbr

= (−1)mbm +

m−1∑
r=0

(−1)rbr +

2m∑
r=m+1

(−1)2m−rb2m−r

= (−1)mbm +

m−1∑
r=0

(−1)rbr +

m∑
q=1

(−1)m−qbm−q

= (−1)mbm + 2
m−1∑
r=0

(−1)rbr .

Thus χ(M) ≡ (−1)mbm ≡ bm mod 2. Q.E.D.

Before presenting the next corollary, we discuss some properties of the bilinear map
P rM in 3.4. First, if M is a compact oriented m-dimensional surface, then

P rM ([α], [β]) =

∫
M
α ∧β = (−1)r(m−r)

∫
M
β ∧α = (−1)r(m−r)Pm−r

M ([β], [α]) ,

for [α] ∈ Hr(M) and [β] ∈ Hm−r(M). Thus

(3.8) P rM ([α], [β]) = (−1)rPm−r
M ([β], [α]) and P rM ([α], [β]) = Pm−r

M ([β], [α])

for m ≡ 0 mod 2 and m ≡ 1 mod 2, respectively.

A bilinear form b : E × E → R on a finite-dimensional real vector space E is said
to be non-degenerate if the corresponding linear map E → E∗ is an isomorphism. Thus,
for a compact oriented 2n-dimensional surface M , Theorem 3.17 tells us that

PnM : Hn(M)×Hn(M) → R

is a non-degenerate bilinear form on Hn(M). Since M has even dimension, the first
equality in (3.8) with r = n tells us that PnM is symmetric if n ≡ 0 mod 2 and anti-
symmetric otherwise.

Recall from Linear Algebra that the (symmetric) matrix B of a symmetric bilinear
form b on an n-dimensional real vector space E can be diagonalized, that is,

B =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


relative to some basis of E. In this case we define the signature of b to be

sig (b) = card{i ; λi > 0} − card{i ; λi < 0} .
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The numbers

n+ = card{i ; λi > 0} and n− = card{i ; λi < 0}

are called, respectively, positive and negative indices of inertia. The number sig(b) is well-
defined, since Sylvester’s Law of Inertia ([4, p. 370]) tells us n+ and n− are invariant
with respect to the choice of bases such that B is diagonal.

In case b is non-degenerate, we have detB ̸= 0, whence λi ̸= 0 for all 1 ≤ i ≤ n. Thus

n = n+ + n− .

Now, if M is a compact oriented 2n-dimensional surface and n ≡ 0 mod 2, then
PnM is a non-degenerate symmetric bilinear form on Hn(M). In this case we define the
signature of M to be

sig(M) := sig(PnM ) .

Note that the signature is not homotopy invariant, since sig(−M) = − sig(M). This
follows from Theorem 2.39(5) applied to PnM .

From this discussion we have the following result.

Corollary 3.17.6. The following items hold for a compact oriented m-dimensional sur-
face M .

1. If m ≡ 1 mod 2, then χ(M) = 0.

2. If m = 2n and n ≡ 1 mod 2, then χ(M) ≡ bn ≡ 0 mod 2.

3. If m = 2n and n ≡ 0 mod 2, then sig(M) ≡ bn ≡ χ(M) mod 2.

4. Let m ≡ 0 mod 4. If sig(M) ̸= 0, then M is irreversible.

5. If m = 2n, n ≡ 0 mod 2 and bn ≡ 1 mod 2, then sig(M), χ(M) ̸= 0. In
particular, M is irreversible.

Proof. For the first item, if m ≡ 1 mod 2, then Corollary 3.17.1 yields

χ(M) =

m∑
r=0

(−1)rbr = (−1)m
m∑
r=0

(−1)m−rbm−r = −χ(M) ,

whence χ(M) = 0. For the second item, PnM non-degenerate and anti-symmetric for n ≡ 1
mod 2. Thus Corollary 3.17.5 and Proposition A.2 give

χ(M) ≡ bm ≡ 0 mod 2 .

As to the third item, if n ≡ 0 mod 2, then PnM is a non-degenerate symmetric bilinear
form.. Thus

bn − sig(M) = bn − sig(PnM ) = b+n + b−n − (b+n − b−n ) = 2b−n .

Therefore, bn ≡ sig(M) mod 2, and Corollary 3.17.5 gives

χ(M) ≡ bm ≡ 0 mod 2 .
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To prove the fourth item, we argue by contraposition. Let m = 2n, where n ≡
0 mod 2, and f : M → M an orientation-reversing diffeomorphism. From item 3. in
Proposition 2.39 we see that ∫

M
f∗ω = −

∫
M
ω

for ω ∈ Ωm(M). Thus, given [α] ∈ Hn(M) and [β] ∈ Hn(M), it follows that

PnM (f∗[α], f∗[β]) =

∫
M
f∗α ∧f∗β =

∫
M
f∗(α ∧β) = −

∫
M
α ∧β = −PnM ([α], [β]) .

From Proposition A.3 we conclude that sig(PnM ) = 0, whence sig(M) = 0.

Lastly, item 5. follows from the previous two.

Q.E.D.

An interesting application of Theorem 3.17 (which will not be proved here) is a
suficient condition for the orientability of connected surfaces, namely: an m-dimensional
surface M is orientable whenever Hm(M) ̸= {0}. 7

This result allows one to conclude that the complex projective space CPn, introduced
in Example 3.11, is orientable, since H2n(CPn) ≈ R. Again from Example 3.11, for n ≡ 0
mod 2, Hn(CPn) ≈ R, that is, bn = 1. Thus, Corollary 3.17.6(5) tells us there is no
orientation-reversing diffeomorphism from CPn onto itself, that is, CPn is irreversible
whenever n is even.

3.4.2. Connection to Hodge Theory

Now we briefly discuss the Hodge Decomposition Theorem and how it implies Theo-
rem 3.17 in the case of compact surfaces.8 Why just the compact case? Well, as we shall
see in a moment, compactness allows one to define an inner product on Ωr(M).

We begin by observing that, to each point x on an m -dimensional surface M ⊆ Rn,
one assings an inner product gx = ⟨·, ·⟩x on TxM ⊆ Rn (in this case, the usual inner
product on Rn) so that, given a parametrization φ : U0 → U of U ⊆ M , the maps
gij : U0 → R defined by

gij(a) =

〈
∂φ

∂xi
(a),

∂φ

∂xj
(a)

〉
x

are smooth. The map g : x 7→ gx = ⟨·, ·⟩x is called Riemannian metric.

Let M be an oriented m-dimensional surface. Using the Riemannian metric on M
and the Riesz representation theorem (the one from Linear Algebra), one extends ⟨·, ·⟩x
to Ar(TxM) by setting

⟨u1 ∧ · · · ∧ur, v1 ∧ · · · ∧vr⟩x = det(⟨u∗i , v∗j ⟩x) ,

7The proof of this fact relies on results regarding covering maps. The details can be seen in [7, p. 49].
8For proofs and further details regarding the subjects discussed here, see [2, 13].



72 3. Poincaré Duality

where u∗i , v
∗
i ∈ TxM are the vectors correponding to u, v ∈ (TxM)∗ via the Riesz repre-

sentation theorem. This leads to the existence of an unique linear isomorphism

⋆ = ⋆r : Ω
r(M) → Ωm−r(M) ,

for each 0 ≤ r ≤ m, called the Hodge star operator, which assigns to each r-form ω an
(m− r)-form ⋆ω such that

α(x) ∧ω(x) = ⟨α(x), ⋆ω(x)⟩x ν(x)

for every x ∈ M and α ∈ Ωm−r(M), where ν denotes the volume form of M (Example
2.27).

Now, let us fixM a compact, oriented m-dimensional surface. Then Hogde’s operator
yields an inner product on Ωr(M), namely,

(3.9) (α|β) :=
∫
M
α ∧ ⋆ β .

Thus, it makes sense to talk about an adjoint ∂r+1 : Ω
r+1(M) → Ωr(M), called codiffer-

ential, for the exterior derivative dr : Ω
r(M) → Ωr+1(M) with respect to (·|·). Using the

fact that ⋆⋆ = (−1)m(m−r), one shows that

∂ = (−1)n(p+1)+1 ⋆ d ⋆ .

is in fact the adjoint map of d with respect to the inner product (·|·), that is,

(drα|β) = (α|∂r+1β)

for every α ∈ Ωr(M) and β ∈ Ωr+1(M). Moreover, one verifies that ∂∂ = 0. Therefore,
there is a chain complex Ω∗(M) = (Ωr, ∂r), namely,

· · · 0 Ωm(M) Ωm−1(M) · · · Ω0(M) 0 · · ·∂m ∂m−1 ∂1 ∂0

In this chain complex, elements of the subspace Zr(M) = ker ∂r are called co-closed
forms and elements of Br(M) = im ∂r+1 are called co-exact forms.

The Hodge operator relates closed, co-closed, exact and co-exact forms by

⋆(Zr(M)) = Zm−r(M) and ⋆ (Br(M)) = Bm−r(M) ,

from which it follows that

Zr(M) ≈ Zm−r(M) and Br(M) ≈ Bm−r(M) (0 ≤ r ≤ m) .

Thus, Theorem A.5 applied to ⋆ yields isomorphisms between de Rham cohomology
groups of M and homology groups Hr(M) of Ω∗(M), namely,

(3.10) Hr
dR(M) ≈ Hm−r(M) .

for 0 ≤ r ≤ m. This is not quite Poincaré duality yet.

In order to state Hodge’s theorem we need to define one more object, which is an
analogue for differential forms of the usual Laplacian. The Laplace-de Rham operator

∆r : Ω
r(M) → Ωr(M)
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is defined by
∆rω = ∂r+1dr(ω) + dr−1∂r(ω)

for every ω ∈ Ωr(M).

(3.11)

Ωr(M) Ωr−1(M)

Ωr+1(M) Ωr(M)

∂r

dr
∆r

dr−1
∂r+1

It can be shown that ∆r commutes with the Hodge operator, the exterior derivative
d and its adjoint ∂. There is then a chain map ∆ : Ω∗(M) → Ω∗(M), given by (3.11) for
0 ≤ r ≤ m. Also, it is not difficult to see that ∆r is self-adjoint with respect to (·|·).

A differential form ω ∈ Ωr(M) is said to be harmonic if ∆rω = 0. In what follows,
we denote by H r(M) the vector space of harmonic differential r-forms. Computing the
expression (∆ω|ω) one easily verifies that ω is harmonic if, and only if, it is closed and
co-closed.

Since the diagram

Ωr(M) Ωm−r(M)

Ωr(M) Ωm−r(M)

⋆r

∆r ∆m−r

⋆r

is commutative for every r, it follows that ⋆r induces an isomorphism

(3.12) H r(M) ≈ H m−r(M) .

We are now ready to state Hodge’s theorem.

Theorem 3.18 (Hodge Decomposition). Let M be a compact, oriented m-dimensional
surface. For each 0 ≤ r ≤ m, the space H r(M) is finite-dimensonal and the inner
product space Ωr(M) splits into the orthogonal direct sum

Ωr(M) = ∆r(Ω
r(M))⊕ H r(M) .

Moreover,

(3.13) Ωr(M) = im dr−1 ⊕ im ∂r+1 ⊕ H r(M)

is also an orthogonal decomposition.

Some comments regarding the proof of Hodge’s theorem are in order. Since the Lapla-
cian is present in Hodge’s theorem, it is only fitting to expect the proof of such theorem
to be related to PDE’s. Indeed, the toughest steps in the proof of Theorem 3.18 are the
finiteness of dimH r(M) and the orthogonality im∆r = H r(M)⊥, since they require
the Hahn-Banach theorem and two other results, the first of which gives a sufficient
condition to the existence of a solution for ∆rω = α, whereas the second one consists of
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sufficient conditions to obtain a Cauchy sequence from a given sequence of differential
forms in Ωr(M). In order to prove these two results, one relies on the machinery of elliptic
operators and of Sobolev spaces Wm,2. For further details, we refer the reader to [13].

An important consequence of Theorem 3.18 is that it allows us to “find” a harmonic
form in each cohomology class in Hr

dR(M). To see this, let us fix a surface M as in
Theorem 3.18. The orthogonal decomposition (3.13) tells us that each ω ∈ Ωr(M) can
be expressed uniquely as

(3.14) ω = dr−1α+ ∂r+1β + γ

for some α ∈ Ωr−1(M), β ∈ Ωr+1(M) and γ ∈ H r(M) = ker dr ∩ ker ∂r. Note that if
dω = 0, then d∂β = 0, whence (∂β|∂β) = (d∂β|β) = 0. Thus, ω represents a de Rham
cohomology class in Hr

dR(M) if, and only if, ∂r+1β = 0.

From this we see that, for [ω] ∈ Hr
dR(M), the form γ originating from the decom-

position (3.14) is a harmonic r-form representing [ω]. Also, this harmonic “component”
is unique. Indeed, if γ̄ ∈ H r(M) is any other harmonic form which is cohomologous to
ω, say ω = dr−1ᾱ + γ̄ for some ᾱ ∈ Ωr−1(M), then γ = γ̄, by the uniqueness of the
orthogonal decomposition. This means that, for 0 ≤ r ≤ m, to each [ω] ∈ Hr

dR(M) there
is an unique harmonic r-form representing [ω]. It then follows that the map

H r(M)
≈−→ Hr

dR(M)

γ 7−→ [γ]

is an isomorphism. Therefore, the fact that dimH r(M) < ∞ (Theorem 3.18) allows
one to obtain the particular case in Proposition 3.1, namely, each Hr

dR(M) is a finite-
dimensional vector space.

Using (3.12), we summarize the discussion above as follows.

Proposition 3.5. Let M be a compact, oriented m-dimensional surface. Then

1. H r(M) ≈ Hr
dR(M) for every 0 ≤ r ≤ m;

2. dimHr
dR(M) <∞ for every 0 ≤ r ≤ m;

3. Hr
dR(M) ≈ Hm−r

dR (M) for every 0 ≤ r ≤ m;

As a consequence of the above result and (3.10), we obtain a duality result for ho-
mology groups of Ω∗(M).

Corollary 3.18.1. Let M be a compact, oriented m-dimensional surface. For every
0 ≤ r ≤ m, the homology group Hr(M) is finite dimensional and

Hr(M) ≈ Hm−r(M) .

Proposition 3.5 together with the existence of the inner product (3.9) implies Theorem
3.17 for compact, oriented surfaces.

Theorem 3.19 (Poincaré Duality, compact case). If M is a compact, oriented m-
dimensional surface, then, for 0 ≤ r ≤ m, the map

DM : Hr(M) → Hm−r(M)∗ ,
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given by

DM [α] · [β] =
∫
M
α ∧β

for [α] ∈ Hr(M) and [β] ∈ Hm−r(M), is an isomorphism.

Proof. From Proposition 3.5(2) and (3), it suffices to show that kerDM = {0}. Thus,
let [α] ∈ Hr(M) be such that DM [α] = 0. We have∫

M
α ∧β = 0

for every [β] ∈ Hm−r(M). In particular∫
M
α ∧ (⋆α) = 0 ,

since ⋆ commutes with d. Therefore, (α|α) = 0, whence α = 0.

Q.E.D.





Appendix A

Some Useful Theorems

This appendix is reserved to state theorems (some of them whitout proof) on integration,
differentiablility and modules, which are used throughout the text. For proofs of some
these results we refer the reader to [11]. We begin with the classical chain rule.

Theorem A.1 (Chain Rule). Let U ⊆ Rm, V ⊆ Rn be open sets, f : U → Rn dif-
ferentiable at a ∈ U , with f(U) ⊂ V , and g : V → Rp differentiable at f(a). Then
g ◦ f : U → Rp is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) · f ′(a) : Rm → Rp .

In terms of matrices we have

[(g ◦ f)′(a)]p×m = [g′(f(a))]p×n · [f ′(a)]n×m .
From the definition of matrix multiplication it follows that

∂(gi ◦ f)
∂xj

(a) =
n∑
k=1

∂gi
∂yk

(f(a))
∂fk
∂xj

(a) ,

for i = 1, . . . , p and j = 1, . . . ,m, whence

∂(g ◦ f)
∂xj

(a) =
n∑
k=1

∂g

∂yk
(f(a))

∂fk
∂xj

(a) .

For the next theorem let U ⊆ Rm be an open set. A map f : U → Rn is said to be
strongly differentiable at a point a ∈ U when there exists a linear map T : Rm → Rn

such that, for x, y ∈ U ,

f(x)− f(y) = T (x− y) + ra(x, y)|x− y| , where lim
(x,y)→(a,a)

ra(x, y) = 0 .

It can be shown ([11, p. 221]) that, for a differentiable map f : U → Rn, strong
differentiability at a point a ∈ U is equivalent to the continuity of the derivate f ′ : U →
L(Rm;Rn) at a.
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Next we have the Inverse Mapping Theorem.

Theorem A.2. (Inverse Mapping) Let f : U → Rm be strongly differentiable at a ∈ U
and f ′(a) : Rm → Rm an isomorphism. Then f is a homeomorphism from an open set
V ∋ a onto an open set W ∋ f(a). The inverse homeomorphism f−1 :W → V is strongly
differentiable at f(a) and its derivative at f(a) equals [f ′(a)]−1. If f ∈ Ck (k ≥ 1) then
V can be taken so that f maps V diffeomorphically onto W ; in particular, f−1 ∈ Ck.

During § 2.3 the following change of variables theorem is used to prove that the
integral of a differential form is a signed integral. For a proof see [11].

Theorem A.3. (Change of Variables) Let φ : U → V be a C1-diffeomorphism between
open sets U, V ⊆ Rm, K ⊆ U a Jordan-measurable compact set and f : φ(X) → R an
integrable function. Then f ◦ φ : K → R is integrable and∫

φ(X)
f =

∫
K
(f ◦ φ)| jacφ| .

During the proof of Theorem 2.37) the following lemma is used in order to extend a
homotopy.

Lemma A.4. There exists a function ξ : R → R such that ξ ∈ C∞, 0 ≤ ξ ≤ 1, ξ(t) = 0
for t ≤ 0 and ξ = 1 for t ≥ 1.

Proof. First consider the function α : R → R, α ∈ C∞, given by

α(t) =

{
e−1/t ; t > 0

0 ; t ≤ 0
.

Then define β : R → R as β(t) = α(t)α(1− t). We have β ∈ C∞ and

β(t) =


0 ; t ≤ 0

e−1/(t−t2) ; 0 < t < 1

0 ; t ≥ 1

.

Taking b =
∫
R β =

∫ 1
0 β, we define γ : R → R, γ ∈ C∞, setting γ(t) = β(t)/b. Thus∫ 1

0
γ = 1 .

Lastly, ξ : R → R is defined by

ξ(t) =

∫ t

−∞
γ =

∫ t

0
γ .

We have 0 ≤ ξ ≤ 1, ξ(t) = 0 for t ≤ 0 and ξ = 1 for t ≥ 1. Q.E.D.

The following result can be proved in a similar fashion to the previous one. For
details, see [11, p. 346].

Proposition A.1. There exists a function ξ : Rm → R such that ξ ∈ C∞
c (Rm) and
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• ξ(x) = 1 for |x| ≤ 1,

• 0 < ξ(x) < 1 for 1 < |x| < 2,

• ξ(x) = 0 for |x| ≥ 2.

In particular, ∫
B[0;2]

ξ ̸= 0 .

The following result is useful when dealing with (co)chain complexes in Chapter 1.

Theorem A.5. Let f : M → N be a homomorphism of R-modules. If A ⊆ X ⊆ M
and B ⊆ Y ⊆ N are submodules such that f(X) ⊆ Y and f(A) ⊆ B, then there exists a
homomorphism of modules f∗ : X/A→ Y/B given by f∗[x] = [f(x)].

Proof. The verification that f∗ is a well-defined R-module homomophism is immediate.
Q.E.D.

In § 3.4 the following results are needed.

Proposition A.2. Let b : E × E → R be an anti-symmetric bilinear form on a finite-
dimensional real vector space E. If b is non-degenerate, then n = dimE is even.

Proof. Since b is anti-symmetric, its matrix B relative to a basis of E is anti-symmetric,
that is, B = −Bt (here (·)t means the transpose matrix). Because b is non-degenerate,
the corresponding linear map f : E → E∗ is a linear isomorphism, and since [f ]n×n = B
it follows that detB ̸= 0. Thus

1 = (detB)−1 det(−Bt) = (−1)n(detB)−1 det(Bt) = (−1)n(detB)−1 det(B) = (−1)n ,

whence must be n even.

Q.E.D.

Proposition A.3. Let b : E × E → R be a non-degenerate symmetric bilinear form on
a finite-dimensional real vector space E. If A : E → E is a linear operator such that

(A.1) b(A(u), A(v)) = −b(u, v)
for u, v ∈ E, then sig(b) = 0, that is n+ = n−.

Proof. Let n = dimE, B = {e1 . . . , en} ⊆ E a basis such that [b]E is diagonal, B+ =
{e ∈ B ; b(e, e) > 0} and B− = {e ∈ B ; b(e, e) < 0}. First, note that if u ∈ E is such
that A(u) = 0, then non-degeneracy and (A.1) imply u = 0. This shows that A is an
isomorphism. Thus C = {A(e1), . . . , A(en)} ⊆ E is a basis of E. Also, (A.1) tells us that
[b]C is a diagonal matrix. Now let C+ = {A(e) ; e ∈ B+} and C− = {A(e) ; e ∈ B−}.
From (A.1) we see that e ∈ B+ =⇒ A(e) ∈ C− and e ∈ B− =⇒ A(e) ∈ C+. Thus
C+ = C−, whence cardC+ = cardC−. Since A is an isomorphism, it follows that B+

corresponds bijectively to A+ and B− corresponds bijectively to A−. Therefore

n+ = cardB+ = cardC+ = cardC− = cardB− = n− .

Q.E.D.
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