Use este identificador para citar ou linkar para este item: https://deposita.ibict.br/handle/deposita/596
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMeira, Manoel Messias Coutinho-
dc.contributor.authorLatteshttp://lattes.cnpq.br/1276479666609854por
dc.contributor.advisorPozza, Simone Andréa-
dc.contributor.advisorLatteshttp://lattes.cnpq.br/5530984461673946por
dc.contributor.advisor-co1Martinez, Diego Stéfani Teodoro-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4898006494427762por
dc.contributor.advisor-co2Cristale, Joyce-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/6525387006649362por
dc.contributor.referees1Bettini, Jefferson-
dc.contributor.referees1Latteshttp://lattes.cnpq.br/3814895410100282por
dc.contributor.referees2Aguiar, Mônica Lopes-
dc.contributor.referees2Latteshttp://lattes.cnpq.br/0431688649128529por
dc.date.accessioned2024-05-09T16:34:53Z-
dc.date.issued2024por
dc.identifier.citationMEIRA, Manoel Messias Coutinho. Preparação e caracterização de filtros de TNT incorporados com Óxido de Grafeno para coleta de Material Particulado atmosférico. 2024. 91 p. Dissertação (Mestrado em Tecnologia) - Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, 2024.por
dc.identifier.urihttps://deposita.ibict.br/handle/deposita/596-
dc.description.resumoA baixa qualidade do ar tem efeitos adversos para o clima, ecossistemas e para a saúde humana. O Material Particulado (MP) é um dos principais poluentes atmosféricos e representa uma séria preocupação para a saúde, sendo associada a doenças respiratórias e cardiovasculares, além de aumento das taxas de mortalidade. Entre os diferentes tamanhos de partículas, aquelas com menos de 100 nm de diâmetro (MP0,1) passam por transformações como modificações no tamanho, estrutura e composição química devido à sua alta área superficial e reatividade, sendo precursoras de partículas nocivas e persistentes. Entre as tecnologias de controle, os filtros e membranas contendo Óxido de Grafeno (GO) têm alta capacidade para capturar MP. Assim, objetiva-se com este trabalho, o desenvolvimento, caracterização e análise da filtração de particulado por filtros de Tecido Não Tecido de polipropileno (TNT-PP) incorporados com GO. Para tanto, a modificação de filtros meltblown comerciais com surfactante Pluronic F-127 e GO ocorreu por duas técnicas: spray e imersão, gerando um revestimento nanoestruturado sobre as microfibras. A caracterização dos flocos de GO foi realizada por Microscopia de Força Atômica (AFM). Enquanto as morfologias e composição dos filtros foram caracterizadas pela Microscopia Eletrônica de Varredura (MEV), perfilometria de contato, espectroscopia Raman, espectroscopia no infravermelho por transformada de Fourier (FT-IR) e tensiometria para ensaio de ângulo de contato. As imagens MEV demonstraram a conformação das fibras, bem como a evolução da formação do filme a partir da deposição de camadas de spray de GO. Os filtros TNT-PP/GO também foram avaliados quanto à captura do particulado por um Analisador de Partículas por Mobilidade Elétrica (SMPS). Nesse contexto, a eficiência de filtração do MP0,1 é maior no meio filtrante funcionalizado (80,4%) em comparação ao filtro sem cobertura (66,2%) devido à presença de grupos funcionais oxigenados do GO. Além da manutenção da baixa queda de pressão (18,6 Pa) e fator de qualidade ~0,086 Pa-1 para a vazão do gás de 1,5 L/min. Assim, o protocolo de incorporação por spray revelou-se eficaz no melhoramento do meio filtrante, apresentando-se como uma estratégia viável e promissora para o desenvolvimento de novos materiais.por
dc.description.abstractPoor air quality has adverse effects on climate, ecosystems, and human health. Airborne particulate matter (PM) is one of the main atmospheric pollutants, and poses a serious threat to health, being associated with respiratory and cardiovascular diseases, in addition to an increased rate of mortality. Among the different particle sizes, those with less than 100 nm (PM0.1) undergo transformations like size modifications, structure, and chemical composition due to their high surface area and reactivity, being precursors of harmful and persistent particles. Among the control technologies, filters and membranes containing Graphene Oxide (GO) have a high capacity to capture PM. Thus, this work aims at the fabrication, characterization, and analysis of the filtration of particulate through polypropylene nonwoven fabric (NWF-PP) filters incorporated with GO. Therefore, commercial meltblown filters modification with the surfactant Pluronic F-127 and GO occurred by two techniques: spraying and immersion, generating a nanostructured coating over the microfibers. The GO flakes characterization was performed through atomic force microscopy (AFM). While the filters morphologies and composition were characterized by scanning electron microscopy (SEM), contact profilometry, Raman spectrometry, Fourier-transform infrared spectroscopy (FT-IR), and tensiometry for contact angle measurement. SEM images show the fibers conformation, as well as the evolution of the film formation from GO spray layers deposition. The NWF-PP filters also had their particle capture efficiency evaluated by a scanning mobility particle sizer (SMPS). In this context, the filtration efficiency of PM0.1 is higher in the functionalized filter medium (80.4%) in comparison with the uncovered filter (66.2%) due to the presence of oxygen-containing functional groups. In addition to low pressure drop (18.6 Pa) and quality factor ~0.086 Pa-1 for gas flow rate at 1.5 L/min. Thus, the incorporation protocol turned out to be efficient in the enhancement of the filter medium, emerging as a viable and promising strategy for new materials development.eng
dc.description.provenanceSubmitted by Manoel Meira (manoelcmeira@gmail.com) on 2024-05-07T01:43:58Z No. of bitstreams: 1 Defesa - Mestrado - Final.pdf: 4189321 bytes, checksum: 81508421b7183b88937abbf87df44787 (MD5)eng
dc.description.provenanceApproved for entry into archive by Cássio Morais (cassiomorais@ibict.br) on 2024-05-09T16:34:53Z (GMT) No. of bitstreams: 1 Defesa - Mestrado - Final.pdf: 4189321 bytes, checksum: 81508421b7183b88937abbf87df44787 (MD5)eng
dc.description.provenanceMade available in DSpace on 2024-05-09T16:34:53Z (GMT). No. of bitstreams: 1 Defesa - Mestrado - Final.pdf: 4189321 bytes, checksum: 81508421b7183b88937abbf87df44787 (MD5) Previous issue date: 2024eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Estadual de Campinas (UNICAMP)por
dc.publisher.departmentFaculdade de Tecnologia (FT)por
dc.publisher.countryBrasilpor
dc.publisher.programPrograma de Pós-graduação em Tecnologia (PPGT)por
dc.relation.referencesABD-ELHAMID, A. I. et al. Graphene oxide: Follow the oxidation mechanism and its application in water treatment. Journal of Molecular Liquids, v. 265, p. 226–237, 1 set. 2018. ABD-ELHAMID, A. I. et al. Decontamination of organic pollutants from aqueous media using cotton fiber-graphene oxide composite, utilizing batch and filter adsorption techniques: a comparative study. RSC Advances, v. 9, n. 10, p. 5770–5785, 2019. ABINT. Como são fabricados os nãotecidos. Disponível em: <https://www.abint.org.br/naotecidos/como-sao-fabricados>. Acesso em: 8 jan. 2024. ALVES, C. Aerossóis atmosféricos: perspectiva histórica, fontes, processos químicos de formação e composição orgânica. Química Nova, v. 28, n. 5, p. 859–870, out. 2005. ANTONANGELI, D. et al. Spin Crossover in Ferropericlase at High Pressure: A Seismologically Transparent Transition? Science, v. 331, n. 6013, p. 64–67, 7 jan. 2011. AREIAS, V. et al. Co-morbidities in patients with gold stage 4 chronic obstructive pulmonary disease. Revista Portuguesa de Pneumologia (English Edition), v. 20, n. 1, p. 5–11, jan. 2014. ATIGHI, M. et al. Metal–Organic Framework@Graphene Oxide Composite-Incorporated Polyacrylonitrile Nanofibrous Filters for Highly Efficient Particulate Matter Removal and Breath Monitoring. Industrial & Engineering Chemistry Research, v. 61, n. 51, p. 18613–18624, 28 dez. 2022. BECERRIL, H. A. et al. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, v. 2, n. 3, p. 463–470, 25 mar. 2008. BETHA, R.; BEHERA, S. N.; BALASUBRAMANIAN, R. 2013 Southeast Asian Smoke Haze: Fractionation of Particulate-Bound Elements and Associated Health Risk. Environmental Science & Technology, v. 48, n. 8, p. 4327–4335, 15 abr. 2014. BIAN, Y. et al. Influence of fiber diameter, filter thickness, and packing density on PM2.5 removal efficiency of electrospun nanofiber air filters for indoor applications. Building and Environment, v. 170, p. 106628, mar. 2020. BILLINGS, C. E. Handbook of fabric filter technology. Massachusetts: GCA Corporation, 1970. v. 1 BORTOLASSI, A. C. C.; GUERRA, V. G.; AGUIAR, M. L. Characterization and evaluate the efficiency of different filter media in removing nanoparticles. Separation and Purification Technology, v. 175, p. 79–86, mar. 2017. BRANCA, C. et al. Effect of intercalated chitosan/clay nanostructures on concentrated pluronic F127 solution: A FTIR-ATR, DSC and rheological study. Journal of Colloid and Interface Science, v. 517, p. 221–229, maio 2018. CASH, J. M. et al. A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. Environmental Science: Processes & Impacts, v. 18, n. 11, p. 1369–1380, 2016. CHANTASO, M. et al. Sugarcane leave-derived cellulose nanocrystal/graphene oxide filter membrane for efficient removal of particulate matter. International Journal of Biological Macromolecules, v. 234, p. 123676, abr. 2023. CHEN, C. et al. A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, v. 47, p. 339–348, jan. 2012. CHEN, C. et al. Silver nanoparticles/graphene oxide arranged on polytetrafluoroethylene substrate hydrophilic modified with TiO2 to construct efficient air purification material. Journal of Environmental Chemical Engineering, v. 11, n. 6, p. 110848, dez. 2023a. CHEN, J.; HOEK, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environment International, v. 143, p. 105974, out. 2020. CHEN, J.-P. et al. Preparation of transparent, amphiphobic and recyclable electrospun window screen air filter for high-efficiency particulate matters capture. Journal of Membrane Science, v. 675, p. 121545, jun. 2023b. CHEN, L. et al. High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, v. 155, p. 345–353, jan. 2017. CHEN, M. et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal. Journal of Membrane Science, v. 635, p. 119463, 1 out. 2021a. CHEN, M. et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal. Journal of Membrane Science, v. 635, p. 119463, 1 out. 2021b. CHEN, Y.-S.; HSIAU, S.-S. Cake formation and growth in cake filtration. Powder Technology, v. 192, n. 2, p. 217–224, jun. 2009. CHEN, Z. et al. Polarization Raman microscope based on channeled spectropolarimetry. Optics and Lasers in Engineering, v. 168, p. 107666, set. 2023c. CHÉRCOLES ASENSIO, R. et al. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and Bioanalytical Chemistry, v. 395, n. 7, p. 2081–2096, 31 dez. 2009. CLAEYS, M. et al. Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science, v. 303, n. 5661, p. 1173–1176, 20 fev. 2004. COURY, J. R. Electrostatic effects in granular bed filtration of gases. United Kingdom: [s.n.]. DAI, H. et al. Electrospinning Polyacrylonitrile/Graphene Oxide/Polyimide nanofibrous membranes for High-efficiency PM2.5 filtration. Separation and Purification Technology, v. 276, p. 119243, 1 dez. 2021. DE MEDEIROS, A. M. Z. et al. Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish embryos. Ecotoxicology and Environmental Safety, v. 209, p. 111776, 1 fev. 2021. DITTO, J. C. et al. An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Communications Chemistry, v. 1, n. 1, p. 75, 2 nov. 2018. DONAHUE, N. M.; ROBINSON, A. L.; PANDIS, S. N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmospheric Environment, v. 43, n. 1, p. 94–106, jan. 2009. DONG, L. et al. Synthesis and reduction of large sized graphene oxide sheets. Chemical Society Reviews, v. 46, n. 23, p. 7306–7316, 2017. FERRARI, A. C. et al. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, v. 97, n. 18, p. 187401, 30 out. 2006. FREITAS, A. DE M.; SOLCI, M. C. Caracterização do MP10 e MP2,5 e distribuição por tamanho de cloreto, nitrato e sulfato em atmosfera urbana e rural de Londrina. Química Nova, v. 32, n. 7, p. 1750–1754, 2009. FURUKAWA, T. et al. Molecular Structure, Crystallinity and Morphology of Polyethylene/Polypropylene Blends Studied by Raman Mapping, Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, and Differential Scanning Calorimetry. Polymer Journal, v. 38, n. 11, p. 1127–1136, 15 nov. 2006. GAO, Y. et al. Differences in Performance and Conductivity Persistence of New Reduced Graphene Oxide Air Filter Materials before and after Eliminating Static Electricity. Materials, v. 16, n. 22, p. 7146, 13 nov. 2023. GEIM, A. K.; NOVOSELOV, K. S. The rise of graphene. Nature Materials, v. 6, n. 3, p. 183–191, mar. 2007. GENTNER, D. R. et al. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proceedings of the National Academy of Sciences, v. 109, n. 45, p. 18318–18323, 6 nov. 2012. GHOSH, M. et al. Confined water layers in graphene oxide probed with spectroscopic ellipsometry. Applied Physics Letters, v. 106, n. 24, p. 241902, 15 jun. 2015. GODOI, K. DE S. P. et al. Mutagenicity in Tradescantia pallida as an Indicator of the Effect of Air Pollution and Human Health. Atmosphere, v. 12, n. 9, p. 1185, 14 set. 2021. GONÇALVES, P. B. Identificação de compostos polares non-targeted por espectrometria de massas de alta resolução em MP. Limeira: Universidade Estadual de Campinas, 2021. GUARNIERI, M.; BALMES, J. R. Outdoor air pollution and asthma. The Lancet, v. 383, n. 9928, p. 1581–1592, maio 2014. GUIMARÃES, C. DE S. Controle e Monitoramento de Poluentes Atmosféricos. 1. ed. Rio de Janeiro: Elsevier, 2016. HAN, M.-C. et al. Single-Side Superhydrophobicity in Si3N4-Doped and SiO2-Treated Polypropylene Nonwoven Webs with Antibacterial Activity. Polymers, v. 14, n. 14, p. 2952, 21 jul. 2022. HINDS, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2. ed. [s.l.] Wiley Interscience, 1999. HSIEH, C.-H. et al. Electrospun graphene oxide–polyvinylidene fluoride composite film preparation and application for air filtration. Modern Physics Letters B, v. 37, n. 17, 20 jun. 2023. HUANG, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, v. 514, n. 7521, p. 218–222, 17 out. 2014. HUMMERS, W. S.; OFFEMAN, R. E. Preparation of Graphitic Oxide. Journal of the American Chemical Society, v. 80, n. 6, p. 1339–1339, 1 mar. 1958. HWANG, S.; ROH, J.; PARK, W. M. Comparison of the relative performance efficiencies of melt-blown and glass fiber filter media for managing fine particles. Aerosol Science and Technology, v. 52, n. 4, p. 451–458, 3 abr. 2018. ISLAMOGLU, T. et al. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. Accounts of Chemical Research, v. 50, n. 4, p. 805–813, 18 abr. 2017. ISO. Nonwovens - Vocabulary. ISO 9092:2019International Organization for Standardization (ISO), , 2019. JEONG, S. et al. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Letters, v. 17, n. 7, p. 4339–4346, 12 jul. 2017. JIAO, C. et al. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. International Journal of Biological Macromolecules, v. 83, p. 133–141, fev. 2016. JIMENEZ, J. L. et al. Evolution of Organic Aerosols in the Atmosphere. Science, v. 326, n. 5959, p. 1525–1529, 11 dez. 2009. JUNG, M. R. et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, v. 127, p. 704–716, fev. 2018a. JUNG, W. et al. An efficient reduced graphene-oxide filter for PM2.5 removal. Journal of Materials Chemistry A, v. 6, n. 35, p. 16975–16982, 2018b. JUNG, W. et al. Reduced graphene-oxide filter system for removing filterable and condensable particulate matter from source. Journal of Hazardous Materials, v. 391, p. 122223, 5 jun. 2020. KADAM, V. V; WANG, L.; PADHYE, R. Electrospun nanofibre materials to filter air pollutants – A review. Journal of Industrial Textiles, v. 47, n. 8, p. 2253–2280, 9 maio 2018. KANAKIDOU, M. et al. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, v. 5, n. 4, p. 1053–1123, 30 mar. 2005. KHAN, N. et al. Fabrication of graphene oxide coated quartz filter paper for enhanced adsorption of particulate matter. Applied Optics, v. 59, n. 2, p. 463, 10 jan. 2020. KIM, K. E.; CHO, D.; PARK, H. J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sciences, v. 152, p. 126–134, maio 2016. KNOPF, D. A.; ALPERT, P. A.; WANG, B. The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry, v. 2, n. 3, p. 168–202, 15 mar. 2018. KRECHMER, J. E. et al. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Atmospheric Measurement Techniques, v. 9, n. 7, p. 3245–3262, 25 jul. 2016. KWOK, D. Y.; NEUMANN, A. W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, v. 81, n. 3, p. 167–249, set. 1999. KWON, H.-S.; RYU, M. H.; CARLSTEN, C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, v. 52, n. 3, p. 318–328, 17 mar. 2020. LAGEMAAT, M. What are nonwovens? Disponível em: <https://www.edana.org/nw-related-industry/what-are-nonwovens>. Acesso em: 8 jan. 2024. LE, B. et al. Exploring advances in nanofiber-based face masks: a comprehensive review of mechanical, electrostatic, and antimicrobial functionality filtration for the removal of airborne particulate matter and pathogens. Emergent Materials, 16 jan. 2024. LI, J. et al. Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles. ACS Applied Materials & Interfaces, v. 4, n. 9, p. 4991–5000, 26 set. 2012. LI, J. et al. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. Journal of Membrane Science, v. 551, p. 85–92, abr. 2018. LI, J. et al. Nest-like multilevel structured graphene oxide-on-polyacrylonitrile membranes for highly efficient filtration of ultrafine particles. Journal of Materiomics, v. 5, n. 3, p. 422–427, 1 set. 2019. LI, P. et al. Air Filtration in the Free Molecular Flow Regime: A Review of High‐Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small, v. 10, n. 22, p. 4543–4561, 6 nov. 2014. LI, Q.-S. et al. Preparation and Performance of Ultra-Fine Polypropylene Antibacterial Fibers via Melt Electrospinning. Polymers, v. 12, n. 3, p. 606, 6 mar. 2020. LIATI, A. et al. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmospheric Environment, v. 101, p. 34–40, jan. 2015. LIU, C. et al. Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, v. 6, n. 1, p. 6205, 16 maio 2015. LIU, C. et al. Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. ACS Biomaterials Science & Engineering, v. 3, n. 3, p. 471–486, 13 mar. 2017. LIU, D.-L. Particle Deposition onto Enclosure Surfaces. Em: Developments in Surface Contamination and Cleaning. [s.l.] Elsevier, 2010. p. 1–56. LIU, S. et al. Graphene oxide embedded polyvinylidene fluoride nanofiber membranes with biomimetic polar adsorption function for mask cartridge materials. Composites Communications, v. 40, p. 101627, jun. 2023. LU, T. et al. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Applied Materials & Interfaces, v. 13, n. 20, p. 23293–23313, 26 maio 2021. MAHER, B. A. et al. Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences, v. 113, n. 39, p. 10797–10801, 27 set. 2016. MAHRT, F. et al. Phase Behavior of Hydrocarbon-like Primary Organic Aerosol and Secondary Organic Aerosol Proxies Based on Their Elemental Oxygen-to-Carbon Ratio. Environmental Science & Technology, v. 55, n. 18, p. 12202–12214, 21 set. 2021. MANAHAN, S. E. Environmental Chemistry. 7. ed. [s.l.] Lewis Publishers, 2000. MAO, J. et al. Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions. iScience, v. 16, p. 133–144, jun. 2019. MAO, J. et al. In situ recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, v. 5, n. 6, p. 2742–2748, 2021. MARSHALL, J. S.; LI, S. Adhesive Particle Flow: A Discrete-Element Approach. [s.l.] Cambridge University Press, 2014. MIAO, D. et al. Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling. Nano Letters, v. 22, n. 2, p. 680–687, 26 jan. 2022. MING, C. W.; RU, C. G.; LIANG, C. G. Properties of Polyhexamethylenediamine/Graphene Oxide Composite Fiber Membranes Prepared by Electrospinning. Sensors and Materials, v. 32, n. 3, p. 909, 10 mar. 2020. MIRHOSSEINI, M. M.; HADDADI-ASL, V.; ZARGARIAN, S. S. Fabrication and characterization of polymer–ceramic nanocomposites containing pluronic F127 immobilized on hydroxyapatite nanoparticles. RSC Advances, v. 6, n. 84, p. 80564–80575, 2016. MOHAMMED, S. Graphene oxide: A mini-review on the versatility and challenges as a membrane material for solvent-based separation. Chemical Engineering Journal Advances, v. 12, p. 100392, nov. 2022. MUECKE, U. P. et al. Initial stages of deposition and film formation during spray pyrolysis — Nickel oxide, cerium gadolinium oxide and mixtures thereof. Thin Solid Films, v. 517, n. 5, p. 1522–1529, jan. 2009. MUNIZ, N. O. et al. Electrospun Filtering Membrane Designed as Component of Self-Decontaminating Protective Masks. Nanomaterials, v. 13, n. 1, p. 9, 20 dez. 2022. NAIR, R. R. et al. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science, v. 335, n. 6067, p. 442–444, 27 jan. 2012. NIE, G. et al. Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Applied Surface Science, v. 284, p. 595–600, 1 nov. 2013. NODA, I. et al. Physical Properties of Polymers Handbook. New York, NY: Springer New York, 2007. PAASONEN, P. et al. Continental anthropogenic primary particle number emissions. Atmospheric Chemistry and Physics, v. 16, n. 11, p. 6823–6840, 6 jun. 2016. PAN, Y. P.; WANG, Y. S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmospheric Chemistry and Physics, v. 15, n. 2, p. 951–972, 28 jan. 2015. PARK, C.; JOHNSTON, A. S.; KWEON, H. Physical filtration efficiency analysis of a polyaniline hybrid composite filter with graphite oxide for particulate matter 2.5. Journal of Applied Polymer Science, v. 137, n. 38, 10 out. 2020. PLASCENCIA-VILLA, G. et al. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease. Scientific Reports, v. 6, n. 1, p. 24873, 28 abr. 2016. PODGÓRSKI, A.; BAŁAZY, A.; GRADOŃ, L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science, v. 61, n. 20, p. 6804–6815, out. 2006. POKHAREL, P.; LEE, D. S. High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chemical Engineering Journal, v. 253, p. 356–365, out. 2014. RACHERLA, P. N.; ADAMS, P. J. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. Journal of Geophysical Research, v. 111, n. D24, p. D24103, 16 dez. 2006. ROBERTS, E.; GHOSH, S.; POURDEYHIMI, B. Process–Structure–Property relationship of roping in meltblown nonwovens. The Journal of The Textile Institute, v. 114, n. 2, p. 289–302, 1 fev. 2023. ROUT, D. R. et al. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. Science of The Total Environment, v. 863, p. 160871, mar. 2023. RUSSELL, S. J.; SMITH, P. A. Technical fabric structures – 3. Nonwoven fabrics. Em: Handbook of Technical Textiles. [s.l.] Elsevier, 2016. p. 163–188. SEIGNEUR, C. Air Pollution. [s.l.] Cambridge University Press, 2019. SEINFELD, J. H.; PANDIS, S. N. Atmospheric chemistry and physics. 2. ed. New Jersey: John Wiley & Sons, Inc., 2006. SHAH, P. S.; BALKHAIR, T. Air pollution and birth outcomes: A systematic review. Environment International, v. 37, n. 2, p. 498–516, fev. 2011. SHAIKH, S. et al. Incorporation of Lamotrigine Drug in the PEO–PPO–PEO Triblock Copolymer (Pluronic F127) Micelles: Effect of Hydrophilic Polymers. Journal of Surfactants and Detergents, v. 20, n. 3, p. 695–706, 20 maio 2017. SHAO, W. et al. Polystyrene/Fluorinated Polyurethane Electrospinning Nanofiber Membranes Incorporated with Graphene Oxide–Halamine as Mask Filter Materials for Reusable Antibacterial Applications. ACS Applied Nano Materials, v. 5, n. 9, p. 13573–13582, 23 set. 2022. SHAO, Y.; RUAN, X.; LI, S. Mechanism for clogging of microchannels by small particles with liquid cohesion. AIChE Journal, v. 67, n. 7, 11 jul. 2021. SHARMA, A. et al. Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano-Structures and Nano-Objects, v. 26, 1 abr. 2021. SHEN, X. et al. Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei. Frontiers of Environmental Science & Engineering, v. 10, n. 5, p. 5, 9 out. 2016. SMITH, A. T. et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, v. 1, n. 1, p. 31–47, mar. 2019. SPARKS, T.; CHASE, G. Filters and Filtration Handbook. [s.l.] Elsevier, 2016. SU, Y.; WANG, J.; LIU, H. FTIR Spectroscopic Investigation of Effects of Temperature and Concentration on PEO−PPO−PEO Block Copolymer Properties in Aqueous Solutions. Macromolecules, v. 35, n. 16, p. 6426–6431, 1 jul. 2002. SUREKHA, G. et al. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, v. 1495, n. 1, p. 012012, 1 mar. 2020. SUTHERLAND, K. Filters and Filtration Handbook. 5. ed. Oxford: Elsevier Ltd, 2008. TANG, X. et al. Introduction of amino and rGO into PP nonwoven surface for removal of gaseous aromatic pollutants and particulate matter from air. Applied Surface Science, v. 511, p. 145631, maio 2020. VANOSDELL, D. W. et al. Experimental Study of Submicrometer and Ultrafine Particle Penetration and Pressure Drop for High Efficiency Filters. Aerosol Science and Technology, v. 12, n. 4, p. 911–925, jan. 1990. VAQUEIRO-CONTRERAS, M. et al. Graphene oxide films for field effect surface passivation of silicon for solar cells. Solar Energy Materials and Solar Cells, v. 187, p. 189–193, 1 dez. 2018. VITA OKTAVIANA, Y.; APRILIANI, E.; KHUSNUL ARIF, D. Fractional kalman filter to estimate the concentration of air pollution. Journal of Physics: Conference Series, v. 1008, p. 012008, abr. 2018. WANG, J. et al. Particulate matter pollution over China and the effects of control policies. Science of The Total Environment, v. 584–585, p. 426–447, abr. 2017. WANG, S. et al. Wettability and Surface Free Energy of Graphene Films. Langmuir, v. 25, n. 18, p. 11078–11081, 15 set. 2009. WANG, X. et al. Biomimetic Fibrous Murray Membranes with Ultrafast Water Transport and Evaporation for Smart Moisture-Wicking Fabrics. ACS Nano, p. acsnano.8b08242, 21 dez. 2018. WHO. Ambient air pollution data. WU, C.-N. et al. Increase in the Water Contact Angle of Composite Film Surfaces Caused by the Assembly of Hydrophilic Nanocellulose Fibrils and Nanoclay Platelets. ACS Applied Materials & Interfaces, v. 6, n. 15, p. 12707–12712, 13 ago. 2014. WU, L. et al. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Particle and Fibre Toxicology, v. 19, n. 1, p. 24, 29 dez. 2022. XU, K. et al. Surface fibrillation of para -aramid nonwoven as a multi-functional air filter with ultralow pressure drop. Journal of Materials Chemistry A, v. 8, n. 42, p. 22269–22279, 2020. YANG, C. Aerosol Filtration Application Using Fibrous Media—An Industrial Perspective. Chinese Journal of Chemical Engineering, v. 20, n. 1, p. 1–9, fev. 2012. YANG, L. et al. Efficient capture of airborne PM by membranes based on holey reduced graphene oxide nanosheets. Journal of Environmental Chemical Engineering, v. 10, n. 6, p. 108979, dez. 2022. ZENG, Y. et al. Comparative Filtration Performance of Composite Air Filter Materials Synthesized Using Different Impregnated Porous Media. Materials, v. 16, n. 13, p. 4851, 6 jul. 2023. ZHANG, C. et al. Graphene Oxide-Modified Polyacrylonitrile Nanofibrous Membranes for Efficient Air Filtration. ACS Applied Nano Materials, v. 2, n. 6, p. 3916–3924, 28 jun. 2019a. ZHANG, C. et al. Graphene Oxide-Modified Polyacrylonitrile Nanofibrous Membranes for Efficient Air Filtration. ACS Applied Nano Materials, v. 2, n. 6, p. 3916–3924, 28 jun. 2019b. ZHANG, H.; CHIAO, M. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications. Journal of Medical and Biological Engineering, v. 35, n. 2, p. 143–155, 1 abr. 2015. ZHANG, P. et al. RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM 2.5 filtration. Environmental Science: Nano, v. 5, n. 8, p. 1813–1820, 2018a. ZHANG, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, v. 34, n. 13, 16 jul. 2007. ZHANG, S. et al. Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM2.5 capture. Journal of Materials Chemistry A, v. 6, n. 33, p. 16139–16148, 2018b. ZHAO, B. et al. Development of electrospun filter with high efficiency to reduce disturbance on gas detection in dusty environments. Journal of Applied Polymer Science, v. 140, n. 31, 15 ago. 2023. ZINADINI, S. et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, v. 453, p. 292–301, mar. 2014. ZOU, W. et al. Preparation of a graphene oxide membrane for air purification. Materials Research Express, v. 6, n. 10, 11 set. 2019a. ZOU, W. et al. Effect of Low-Temperature Heat Treatment on PM2.5 Adsorption Properties of GO Films. Nano, v. 14, n. 12, p. 1950151, 30 dez. 2019b.por
dc.rightsopenAccesspor
dc.subjectadsorçãopor
dc.subjectfiltros de arpor
dc.subjectmaterial particuladopor
dc.subjectpolipropilenopor
dc.subjectadsorptioneng
dc.subjectair filterseng
dc.subjectparticulate mattereng
dc.subjectpolypropyleneeng
dc.subject.cnpqControle da poluiçãopor
dc.subject.cnpqEngenhariaspor
dc.subject.cnpqQuímicapor
dc.titlePreparação e caracterização de filtros de TNT incorporados com Óxido de Grafeno para coleta de Material Particulado atmosféricopor
dc.title.alternativePreparation and characterization of Nonwoven Fabric Filters incorporated with Graphene Oxide for atmospheric Particulate Matter removaleng
dc.typemastherThesispor
Aparece nas coleções:Sudeste

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Defesa - Mestrado - Final.pdfDocumento principal4,09 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Ferramentas do administrador