Códigos de Grupo Gerado por Grupos de Reflexões Finitos

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Instituição

Citar

Resumo

O principal objetivo deste trabalho é a construção de códigos de grupos ótimos gerado por grupos de reflexões finitas ou grupos de Coxeter irredutíveis. Um grupo é chamado de Grupo de Coxeter, em homenagem a H. S. M. Coxeter (1934), que classificou completamente todos grupos de reflexões e deduziu várias de suas propriedades usando principalmente métodos geométricos. A construção é baseada na análise do problema do vetor inicial. Este problema é resolvido a partir da utilização de um sistema de vetores com características próprias, chamado de sistema de raízes. Os resultados clássicos de código de grupos são generalizações dos já bem conhecidos códigos de modulação de permutação introduzidos por Slepian há mais de 42 anos, onde verifica-se que o problema do vetor inicial restrito a grupos de Coxeter tem uma solução que pode ser facilmente calculada. Com o objetivo de melhor entendimento da teoria, é dada uma abordagem algébrica na finalização do livro dando alguns exemplos para a determinação do vetor inicial.

Descrição

Citação

item.page.identifier.dark

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess