Perspectives on the Feasibility and Adoption of Fully Homomorphic Encryption - A Fully Homomorphic Encryption Application on Spam Detection with Machine Learning Models

OrientadorRibeiro, Carlos Nuno da Cruz
Orcid do Orientador0000-0002-6080-0996
AutorPinto, Adriano Roberto
Orcid do Autor0009-0000-7654-1442
Membro da bancaCaleiro, Carlos Manuel Costa Lourenço
Membro da bancaSilva, Fernando Henrique Côrte-Real Mira da
Orcid Membro da banca0000-0001-5587-6585
Orcid Membro da banca0000-0001-9959-3798
Data de Acesso2026-01-23T15:31:24Z
Ano de publicação2024-12-03
AbstractA adoção da computação em nuvem resultou em incidentes de segurança, como vazamentos de dados nos setores público e privado. Provedores operam sem transparência, descumprem re-gulamentações e exploram dados privados para publicidade e treinamento de modelos de inteligência artificial. As empresas de tecnologia também colaboram com agências de inteligência para vigiar ilegalmente indivíduos e governos, compartilhando dados privados, como as mensagens de email. Este estudo analisa a viabilidade da Criptografia Completamente Homomórfica (CCH) como solução para essas questões de segurança, com foco na detecção de spam e provedores de email como objetos representativos no universo da computação feita por terceiros em dados privados. A CCH mantém a privacidade ao habilitar computações enquanto os dados estão criptografados, mas exige elevados recursos computacionais. O desenvolvimento de aplicativos baseados em CCH é complexo e requer aplicação de conceitos matemáticos e criptográficos avançados. Este trabalho avalia a viabilidade da CCH por meio de experimentos em detecção de spam implementando o Fully Homomorphic Encryption Spam Detector (FHE-SD), um aplicativo que utiliza a biblioteca Concrete-ML para abstrair a complexidade da CCH e simplificar sua adoção. O ambiente experimental comporta um dispositivo com hardware limitado, escolhido para verificar se a CCH pode funcionar sem hardware especializado. Para melhores resultados, o FHE-SD tem suporte à detecção de spam usando algoritmos de aprendizado de máquina, que são medidas anti-spam comuns. Quatro modelos de aprendizado de máquina foram implementados no FHE-SD, em suas versões CCH e em dados puros, permitindo métricas e comparações de desempenho em relação às abordagens tradicionais.
ProveniênciaSubmitted by Adriano Roberto Pinto (adrianofw@protonmail.com) on 2026-01-21T21:33:13Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 1 Thesis.pdf: 4318607 bytes, checksum: f753715373f4a5be3d6fcab41a2f8a4c (MD5)en
ProveniênciaStep: editstep - action:editaction Rejected by Cássio Morais (cassiomorais@ibict.br), reason: Bom dia Adriano, No seu depósito ficou faltando a folha de assinatura da banca examinadora. Poderia acrescentar um título com a tradução em português. Corrigi a forma de preenchimento da autoria, sobrenome e nome. Estou retornando o depósito para as devidas correções. Atenciosamente, Cássio T. de Morais on 2026-01-23T12:36:50Z (GMT)en
ProveniênciaSubmitted by Adriano Roberto Pinto (adrianofw@protonmail.com) on 2026-01-23T14:56:45Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Perspectives_on_the_Feasibility_and_Adoption_of_Fully_Homomorphic_Encryption_Adriano_Pinto.pdf: 4318607 bytes, checksum: f753715373f4a5be3d6fcab41a2f8a4c (MD5) Ata e critérios Adriano Roberto Pinto (105294)_signed.pdf: 2618865 bytes, checksum: f9029ada40345cbba71f7adb7492ca4c (MD5)en
ProveniênciaStep: editstep - action:editaction Approved for entry into archive by Cássio Morais (cassiomorais@ibict.br) on 2026-01-23T15:31:24Z (GMT)en
ProveniênciaMade available in DSpace on 2026-01-23T15:31:24Z (GMT). No. of bitstreams: 2 Perspectives_on_the_Feasibility_and_Adoption_of_Fully_Homomorphic_Encryption_Adriano_Pinto.pdf: 4318607 bytes, checksum: f753715373f4a5be3d6fcab41a2f8a4c (MD5) Ata e critérios Adriano Roberto Pinto (105294)_signed.pdf: 2618865 bytes, checksum: f9029ada40345cbba71f7adb7492ca4c (MD5) Previous issue date: 2024-12-03en
Referência bibliográfica1 GORALSKI, W. The illustrated network: how TCP/IP works in a modern network. Amsterdam; Boston: Elsevier/Morgan Kaufmann Publishers, 2009. (The Morgan Kaufmann series in networking). ISBN 9780123745415. 2 KUROSE, J. F.; ROSS, K. W. Computer networking: a top-down approach. Eighth edition. Hoboken: Pearson, 2021. ISBN 9780136681557. 3 NIC.BR; CGI.BR; CERT.BR. Antispam.br ::. <https://www.antispam.br/admin/greylisting/>. [Accessed 22-06-2024]. 4 BADILLO, S. et al. An introduction to machine learning. Clinical Pharmacology & Therapeutics, v. 107, n. 4, p. 871885, abr. 2020. ISSN 0009-9236, 1532-6535. Disponível em: <https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1796>. 5 ISSUE Information. Expert Systems, v. 41, n. 2, p. e13344, 2024. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13344>. 6 AZHARI, M. et al. Adaptation of the random forest method: solving the problem of pulsar search. In: Proceedings of the 4th International Conference on Smart City Applications. New York, NY, USA: Association for Computing Machinery, 2019. (SCA 19), p. 16. ISBN 9781450362894. Disponível em:<https://doi.org/10.1145/3368756.3369004>. 7 AGRAWAL, R.; JOSHI, A. On architecting fully homomorphic encryption-based computing systems. [S.l.]: Springer, 2023. 8 ABELS, S.; KHISAMUTDINOV, E. Nucleic acid computing and its potential to transform silicon-based technology. DNA and RNA Nanotechnology, v. 2, 12 2015. 9 HARRIS, D.; HARRIS, S. Digital Design and Computer Architecture, Second Edition. 2nd. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012. ISBN 0123944244. 10 PULIDO-GAYTAN, B. et al. Privacy-preserving neural networks with homomorphic encryption: C hallenges and opportunities. Peer-to-Peer Networking and Applications, Springer, v. 14, n. 3, p. 1666–1691, 2021. 11 STEHLé, D. et al. Efficient public key encryption based on ideal lattices. In: Proceedings of the 15th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag, 2009. (ASIACRYPT ’09), p. 617635. ISBN 9783642103650. Disponível em: <https://doi.org/10.1007/978-3-642-10366-7_36>. 12 JOYE, M. Substack newsletter, Homomorphic Encryption 101. 2021. Disponível em: <https://zamafhe.substack.com/p/homomorphic-encryption-101>. 13 Zama. TFHE Deep Dive - Part II - Encodings and linear leveled operations. 2022. Disponível em:<https://www.zama.ai/post/tfhe-deep-dive-part-2>. 14 MARCOLLA, C. et al. Survey on fully homomorphic encryption, theory, and applications. Proceedings of the IEEE, v. 110, n. 10, p. 1572–1609, 2022. 15 VIAND, A.; JATTKE, P.; HITHNAWI, A. Sok: Fully homomorphic encryption compilers. In: IEEE. 2021 IEEE Symposium on Security and Privacy (SP). [S.l.], 2021. p. 1092–1108. 16 SAFI, A.; SINGH, S. A systematic literature review on phishing website detection techniques. Journal of King Saud University-Computer and Information Sciences, Elsevier, v. 35, n. 2, p. 590–611, 2023. 17 ZAMA. Concrete: TFHE Compiler that converts python programs into FHE equivalent. 2022. <https://github.com/zama-ai/concrete>. 18 RESNICK, P. Request for Comments. Internet Message Format. [s.n.], 2008. Disponível em: <https://datatracker.ietf.org/doc/rfc5322/>. 19 CALLAS, J. et al. OpenPGP Message Format. [s.n.], 2007. RFC4880 p. Disponível em: <https://www.rfc-editor.org/info/rfc4880>. 20 GOOGLE. Google Terms of Service. [Accessed 22-06-2024]. 21 OFLAHERTY, K. How private is your gmail, and should you switch? The Observer, maio 2021. ISSN 0029-7712. Disponível em: <https://www.theguardian.com/technology/2021/may/09/ how-private-is-your-gmail-and-should-you-switch>. 22 2024. Disponível em: <https://legal.yahoo.com/us/en/yahoo/privacy/products/communications/ index.html>. 23 2024. Disponível em: <https://www.microsoft.com/en-us/servicesagreement>. 24 POST, T. The PRISM program. <https://www.washingtonpost.com/wp-srv/special/politics/ prism-collection-documents/>. [Accessed 09-08-2024]. 25 MACASKILL, E. et al. NSA files decoded: Edward Snowdens surveillance revelations explained. 2013. Disponível em: <http://www.theguardian.com/world/interactive/2013/nov/01/ snowden-nsa-files-surveillance-revelations-decoded>. 26 2019. Disponível em: <https://theintercept.com/series/snowden-archive/>. 27 GREENWALD, G. et al. Microsoft handed the nsa access to encrypted messages. The Guardian, jul. 2013. ISSN 0261-3077. Disponível em: <https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data>. 28 MONROY, I. B. Immobilized or petrified? explaining privacy concerns and the (de) mobilization against mass online surveillance in 21st-century advanced democracies. McGill University, 2023. 29 ROJSZCZAK, M. Bulk surveillance, democracy and human rights law in Europe. London: Routledge, 2024. 30 ZAJKO, M. Security against surveillance: It security as resistance to pervasive surveillance. Surveillance & Society, Queens University Library, v. 16, n. 1, p. 3952, abr. 2018. ISSN 1477-7487. Disponível em: <http://dx.doi.org/10.24908/ss.v16i1.5316>. 31 BRADEN, R. T. Request for Comments. Requirements for Internet Hosts - Communication Layers. [s.n.], 1989. Disponível em: <https://datatracker.ietf.org/doc/rfc1122/>. 32 KUMAR, S.; DALAL, S.; DIXIT, V. The osi model: overview on the seven layers of computer networks. International Journal of Computer Science and Information Technology Research, v. 2, n. 3, p. 461–466, 2014. 33 ALVESTRAND, H. T. Request for Comments. A Mission Statement for the IETF. [s.n.], 2004. Disponível em: <https://datatracker.ietf.org/doc/rfc3935/>. 34 KOYMANS, C.; SCHEERDER, J. Email. In: . Handbook of Network and System Administration. Elsevier, 2008. p. 147172. ISBN 9780444521989. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/B9780444521989500094>. 35 UNIX and Linux system administration handbook. Fifth edition. Boston, MA: Addison-Wesley, 2018. ISBN 9780134277554. 36 KLENSIN, J. C. Request for Comments. Simple Mail Transfer Protocol. [s.n.], 2008. Disponível em: <https://datatracker.ietf.org/doc/rfc5321/>. 37 CROCKER, D. et al. Request for Comments. SMTP Service Extensions. [s.n.], 1995. Disponível em: <https://datatracker.ietf.org/doc/rfc1869/>. 38 CRISPIN, M. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1. [s.n.], 2003. RFC3501 p. Disponível em: <https://www.rfc-editor.org/info/rfc3501>. 39 ROSE, M. T.; MYERS, J. G. Request for Comments. Post Office Protocol - Version 3. [s.n.], 1996. Disponível em: <https://datatracker.ietf.org/doc/rfc1939/>. 40 GORALSKI, W. The illustrated network: how TCP/IP works in a modern network. Second edition. Cambridge, MA: Morgan Kaufmann Publishers, 2017. ISBN 9780128110270. 41 FREED, N.; BORENSTEIN, N. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. [s.n.], 1996. RFC2045 p. Disponível em: <https://www.rfc-editor.org/info/rfc2045>. 42 BRUNTON, F. Spam: a shadow history of the Internet. Cambridge (Mass.): The MIT press, 2013. (Infrastructures series). ISBN 9780262018876. 43 CRANOR, L. F.; LAMACCHIA, B. A. Spam! Communications of the ACM, ACM New York, NY, USA, v. 41, n. 8, p. 74–83, 1998. 44 BRODY, R. G.; KERN, S.; OGUNADE, K. An insider’s look at the rise of nigerian 419 scams. Journal of Financial Crime, Emerald Publishing Limited, v. 29, n. 1, p. 202–214, 2022. 45 MONTHLY share of spam in the total e-mail traffic worldwide from January 2014 to December 2023. Disponível em: <https://www.statista.com/statistics/420391/spam-email-traffic-share/>. 46 SHIBLI, A. M.; PRITOM, M. M. A.; GUPTA, M. Abusegpt: Abuse of generative ai chatbots to create smishing campaigns. arXiv preprint arXiv:2402.09728, 2024. 47 GUERRA, P. H. C. et al. Spamming chains: a new way of understanding spammer behavior. In: The 6th g Conference on Email and Anti-Spam. [S.l.: s.n.], 2009. 48 SANZ, E. P.; Gómez Hidalgo, J. M.; Cortizo Pérez, J. C. Chapter 3 email spam filtering. In: Software Development. Elsevier, 2008, (Advances in Computers, v. 74). p. 45–114. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0065245808006037>. 49 COOK, D. F. et al. Catching spam before it arrives: domain specific dynamic blacklists. University Of Tasmania, 2006. 50 EVAN, H. The next step in the spam control war: Greylisting. http://projects. puremagic. com/greylisting/whitepaper. html, 2003. 51 KHAN, W. Z. et al. A comprehensive study of email spam botnet detection. IEEE Communications Surveys & Tutorials, IEEE, v. 17, n. 4, p. 2271–2295, 2015. 52 HARRIS, E. Greylisting. http://projects. puremagic. com/greylisting/, 2013. 53 SIEVE: An Email Filtering Language. [s.n.], 2008. RFC5228 p. Disponível em: <https://www.rfc-editor.org/info/rfc5228>. 54 RUSSELL, S. J. et al. Artificial intelligence: a modern approach. Fourth edition, global edition. Harlow: Pearson, 2022. (Pearson series in artificial intelligence). ISBN 9781292401133. 55 TURING, A. M. Computing machinery and intelligence. In: . Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Dordrecht: Springer Netherlands, 2009. p. 23–65. ISBN 978-1-4020-6710-5. Disponível em:<https://doi.org/10.1007/978-1-4020-6710-5_3>. 56 LUONG, T. et al. Novel hardware implementation of deduplicating visually identical jpeg image chunks. IEEE Access, v. 12, p. 69568–69577, 2024. 57 ANZEL, A.; HEIDER, D.; HATTAB, G. The visual story of data storage: From storage properties to user interfaces. Computational and Structural Biotechnology Journal, Elsevier, v. 19, p. 4904–4918, 2021. 58 de Vries, A. The growing energy footprint of artificial intelligence. Joule, v. 7, n. 10, p. 2191–2194, 2023. ISSN 2542-4351. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S2542435123003653>. 59 WEISS, S. M.; KULIKOWSKI, C. A. Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Mateo, Calif: M. Kaufmann Publishers, 1991. ISBN 9781558600652. 60 INAM, H. et al. Smart and automated infrastructure management: A deep learning approach for crack detection in bridge images. Sustainability, MDPI, v. 15, n. 3, p. 1866, 2023. 61 LOPEZ, O. A. M. Multivariate Statistical Machine Learning Methods for Genomic Prediction. [S.l.]: SPRINGER, 2022. ISBN 9783030890094. 62 HU, T.; ZHOU, X.-H. Unveiling llm evaluation focused on metrics: Challenges and solutions. arXiv preprint arXiv:2404.09135, 2024. 63 YEDIDIA, A. Against the f-score. URL: https://adamyedidia. files. wordpress. com/2014/11/fscore. pdf, 2016. 64 KRZANOWSKI, W. J.; HAND, D. J. ROC curves for continuous data. Boca Raton: CRC Press, 2009. (Monographs on statistics and applied probability). ISBN 9781439800218. 65 HOO, Z. H.; CANDLISH, J.; TEARE, D. What is an roc curve? Emergency Medicine Journal, British Association for Accident and Emergency Medicine, v. 34, n. 6, p. 357–359, 2017. ISSN 1472-0205. Disponível em: <https://emj.bmj.com/content/34/6/357>. 66 ZHANG, X. et al. The use of roc and auc in the validation of objective image fusion evaluation metrics. Signal Processing, v. 115, p. 38–48, 2015. ISSN 0165-1684. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0165168415001085>. 67 scikit-learn. Probability Calibration. 2024. Disponível em: <https://scikit-learn.org/stable/ modules/calibration.html>. 68 ENCYCLOPEDIA of Machine Learning and Data Science. New York, NY: Springer US, 2020. ISBN 9781489975027. Disponível em: <https://link.springer.com/10.1007/978-1-4899-7502-7>. 69 ALBON, C. Machine learning with Python cookbook: practical solutions from preprocessing to deep learning. First edition. Sebastopol, CA: OReilly Media, 2018. ISBN 9781491989388. 70 GOLDBERG, Y. Neural network methods for natural language processing. Reprint of original edition ľmorgan&claypool 2017. Cham: Springer nature Switzerland AG, 2022. (Synthesis lectures on human language technologies). ISBN 9783031010378. 71 MANNING, C.; RAGHAVAN, P.; SCHUTZE, H. Introduction to information retrieval. New York: Cambridge University Press, 2008. ISBN 9780521865715. 72 ENCYCLOPEDIA of algorithms. New York; London: Springer, 2007. (Springer reference). ISBN 9780387307701. 73 scikit-learn. LinearSVC. 2024. Disponível em: <https://scikit-learn/stable/modules/generated/ sklearn.svm.LinearSVC.html>. 74 LEARN scikit. Linear Models. 2024. Disponível em: <https://scikit-learn/stable/modules/linear_ model.html>. 75 MUSA, A. B. Comparative study on classification performance between support vector machine and logistic regression. International Journal of Machine Learning and Cybernetics, v. 4, n. 1, p. 1324, fev. 2013. ISSN 1868-808X. Disponível em: <https://doi.org/10.1007/s13042-012-0068-x>. 76 PANIGRAHI, R.; BORAH, S. Classification and analysis of facebook metrics dataset using supervised classifiers. In: . Social Network Analytics. Elsevier, 2019. p. 119. ISBN 9780128154588. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/B9780128154588000013>. 77 CHEN, T.; GUESTRIN, C. Documentation, XGBoost. Disponível em: <https://xgboost.ai/>. 78 Chen, Tianqi and Guestring, Carlos. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016. (KDD ’16), p. 785794. ISBN 9781450342322. Disponível em: <https://doi.org/10.1145/2939672.2939785>. 79 CONRAD, E.; MISENAR, S.; FELDMAN, J. Eleventh Hour CISSP. [S.l.]: Elsevier Science 2016., 2016. ISBN 9780128113776. 80 SONI, J.; GOODMAN, R. A mind at play: how Claude Shannon invented the information age. New York: Simon & Schuster, 2017. ISBN 9781476766683. 81 MOLLIN, R. A. An introduction to cryptography. 2nd ed. ed. Boca Raton: Chapman & Hall/CRC, 2007. (Discrete mathematics and its applications). ISBN 9781584886181. 82 KATZ, J.; LINDELL, Y. Introduction to modern cryptography. Second edition. Boca Raton: CRC Press/Taylor & Francis, 2015. (Chapman & hall/crc cryptography and network security series). ISBN 9781466570269. 83 VELVINDRON, L.; MORIARTY, K.; GHEDINI, A. Request for Comments. Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2. [s.n.], 2021. Disponível em: <https://datatracker.ietf.org/doc/rfc9155/>. 84 KNOLL, T. Adapting kerckhoffss principle. Advanced Microkernel Operating Systems (2018), v. 93, 2018. 85 GANJEWAR, R. Diffie hellman key exchange. Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, v. 93106, 2010. 86 STINSON, D. R.; PATERSON, M. B. Cryptography: theory and practice. Fourth edition. Boca Raton, FL: Chapman & Hall/CRC Press, 2022. (Textbooks in mathematics). ISBN 9781032476049. 87 NITA, S. L.; MIHAILESCU, M. I. Advances to Homomorphic and Searchable Encryption. Cham: Springer Nature Switzerland, 2023. ISBN 9783031432132. Disponível em: <https://link.springer.com/10.1007/978-3-031-43214-9>. 88 RIVEST, R. L. et al. On data banks and privacy homomorphisms. Foundations of secure computation, Citeseer, v. 4, n. 11, p. 169–180, 1978. 89 RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. M. Cryptographic communications system and method. 1983. Disponível em: <https://patents.google.com/patent/US4405829A/en>. 90 PAAR, C.; PELZL, J. Understanding cryptography. 2010. ed. Berlin, Germany: Springer, 2014. 91 ROCHA, V. F. da; LÓPEZ, J. An overview on homomorphic encryption algorithms. In: . [s.n.], 2019. Disponível em: <https://api.semanticscholar.org/CorpusID:202667135>. 92 HENNESSY, J. L. Computer architecture: a quantitative approach. Sixth edition. Cambridge, MA: Morgan Kaufmann Publishers, 2019. ISBN 9780128119051. 93 DAGHLIAN, J. Logica e algebra de Boole. 4. ed.. ed. Sao Paulo (SP): Atlas, 2009. ISBN 9788522412563. 94 BABU, M.; GA, S. K. In-depth survey on xor gate design. IN-DEPTH, v. 7, n. 18, p. 2020, 2020. 95 MUNJAL, K.; BHATIA, R. Analysing rsa and paillier homomorphic property for security in cloud. Procedia Computer Science, Elsevier, v. 215, p. 240–246, 2022. 96 PAILLIER, P. Public-key cryptosystems based on composite degree residuosity classes. In: SPRINGER. International conference on the theory and applications of cryptographic techniques. [S.l.], 1999. p. 223–238. 97 PROTECTING privacy through homomorphic encryption. corrected publication. Cham, Switzerland: Springer Nature, 2022. ISBN 9783030772864. 98 MUNJAL, K.; BHATIA, R. A systematic review of homomorphic encryption and its contributions in healthcare industry. Complex & Intelligent Systems, Springer, v. 9, n. 4, p. 3759–3786, 2023. 99 ACAR, A. et al. A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys (Csur), ACM New York, NY, USA, v. 51, n. 4, p. 1–35, 2018. 100 SILVERBERG, A. Fully homomorphic encryption for mathematicians. Women in numbers 2: research directions in number theory, v. 606, p. 111, 2013. 101 ZHANG, J.; ZHANG, Z. Lattice-Based Cryptosystems. [S.l.]: Springer, 2020. 102 SIPSER, M. Introduction to the theory of computation. 3. ed. Belmont, CA: Wadsworth Publishing, 2012. 103 GENTRY, C.; SAHAI, A.; WATERS, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CANETTI, R.; GARAY, J. A. (Ed.). Advances in Cryptology CRYPTO 2013. Berlin, Heidelberg: Springer, 2013. p. 7592. ISBN 9783642400414. 104 CHILLOTTI, I. et al. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for tfhe. In: SPRINGER. Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27. [S.l.], 2021. p. 670–699. 105 BRAKERSKI, Z.; GENTRY, C.; VAIKUNTANATHAN, V. (leveled) fully homomorphic encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), ACM New York, NY, USA, v. 6, n. 3, p. 1–36, 2014. 106 Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer Arithmetics Over Encrypted Data. 2022. <https://github.com/zama-ai/tfhe-rs>. 107 ZAMA. Concrete-ML: a Privacy-Preserving Machine Learning Library using Fully Homomorphic Encryption for Data Scientists. 2022. <https://github.com/zama-ai/concrete-ml>. 108 DUCAS, L.; MICCIANCIO, D. FHEW: Bootstrapping Homomorphic Encryption in less than a second. 2014. Cryptology ePrint Archive, Paper 2014/816. <https://eprint.iacr.org/2014/816>. Disponível em: <https://eprint.iacr.org/2014/816>. 109 CHILLOTTI, I. et al. Tfhe: fast fully homomorphic encryption over the torus. Journal of Cryptology, Springer, v. 33, n. 1, p. 34–91, 2020. 110 Chillotti, Ilaria and Gama, Nicolas and Georgieva, Mariya and Izabach, Malika. Faster packed homomorphic operations and efficient circuit bootstrapping for tfhe. In: SPRINGER. International Conference on the Theory and Application of Cryptology and Information Security. [S.l.], 2017. p. 377–408. 111 CHILLOTTI, I.; JOYE, M.; PAILLIER, P. Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In: SPRINGER. Cyber Security Cryptography and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings 5. [S.l.], 2021. p. 1–19. 112 ISO/IEC WD 18033-8. <https://www.iso.org/standard/83139.html>. [Accessed 23-06-2024]. 113 SONG, C.; HUANG, R. Secure convolution neural network inference based on homomorphic encryption. Applied Sciences, MDPI, v. 13, n. 10, p. 6117, 2023. 114 CHEN, H.; CHILLOTTI, I.; SONG, Y. Improved bootstrapping for approximate homomorphic encryption. In: SPRINGER. Annual International Conference on the Theory and Applications of Cryptographic Techniques. [S.l.], 2019. p. 34–54. 115 ROVIDA, L. Fast but approximate homomorphic k-means based on masking technique. International Journal of Information Security, Springer, v. 22, n. 6, p. 1605–1619, 2023. 116 WANG, J. et al. Intrusion detection framework based on homomorphic encryption in ami network. Frontiers in Physics, Frontiers, v. 10, p. 1102892, 2022. 117 FANG, H.; QIAN, Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet, MDPI, v. 13, n. 4, p. 94, 2021. 118 World Health Organization. Human rights. <https://www.who.int/news-room/fact-sheets/detail/ human-rights-and-health>. [Accessed 22-06-2024]. 119 PATIL, T. B.; PATNAIK, G. K.; BHOLE, A. T. Big data privacy using fully homomorphic non-deterministic encryption. In: 2017 IEEE 7th International Advance Computing Conference (IACC). [S.l.: s.n.], 2017. p. 138–143. 120 DANIEL, E. Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey wolf optimization algorithm. IEEE Sensors Journal, IEEE, v. 18, n. 16, p. 6804–6811, 2018. 121 KIM, M.; SONG, Y.; CHEON, J. H. Secure searching of biomarkers through hybrid homomorphic encryption scheme. BMC medical genomics, Springer, v. 10, p. 69–76, 2017. 122 YI, X. et al. Privacy protection for wireless medical sensor data. IEEE Transactions on Dependable and Secure Computing, v. 13, n. 3, p. 369–380, 2016. 123 RAJALAKSHMI, V.; STINA, S. A. et al. Private searching on streaming data based on homomorphic encryption. International Journal on Information Sciences & Computing, v. 10, n. 2, 2016. 124 PAPADIMITRIOU, A. et al. Big data analytics over encrypted datasets with seabed. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). [S.l.: s.n.], 2016. p. 587–602. 125 GIBSON, J. P. et al. A review of e-voting: the past, present and future. Annals of Telecommunications, Springer, v. 71, p. 279–286, 2016. 126 CORTIER, V. Formal verification of e-voting: solutions and challenges. ACM SIGLOG News, Association for Computing Machinery, New York, NY, USA, v. 2, n. 1, p. 2534, jan 2015. Disponível em: <https://doi.org/10.1145/2728816.2728823>. 127 TSOUTSOS, N. G.; MANIATAKOS, M. Efficient detection for malicious and random errors in additive encrypted computation. IEEE Transactions on Computers, v. 67, n. 1, p. 1631, jan. 2018. ISSN 0018-9340. Disponível em: <http://ieeexplore.ieee.org/document/7967774/>. 128 LIN, Y. et al. Power data blockchain sharing scheme based on homomorphic encryption. In: IEEE. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). [S.l.], 2022. v. 5, p. 625–629. 129 SALMAN, S. A.-B.; AL-JANABI, S.; SAGHEER, A. M. Valid blockchain-based e-voting using elliptic curve and homomorphic encryption. International Journal of Interactive Mobile Technologies, v. 16, n. 20, 2022. 130 QU, W. et al. A electronic voting protocol based on blockchain and homomorphic signcryption. Concurrency and Computation: Practice and Experience, Wiley Online Library, v. 34, n. 16, p. e5817, 2022. 131 ZHOU, L. et al. Beekeeper: A blockchain-based iot system with secure storage and homomorphic computation. IEEE Access, IEEE, v. 6, p. 43472–43488, 2018. 132 SHRESTHA, R.; KIM, S. Integration of iot with blockchain and homomorphic encryption: Challenging issues and opportunities. In: Advances in computers. [S.l.]: Elsevier, 2019. v. 115, p. 293–331. 133 ÐORđEVIĆ, G.; MARKOVIĆ, M.; VULETIĆ, P. Evaulation of homomorphic encryption implementation on iot device. JITA-APEIRON, v. 23, n. 1, p. 32–39, 2022. 134 GUPTA, S. et al. Energy-efficient dynamic homomorphic security scheme for fog computing in iot networks. Journal of Information Security and Applications, Elsevier, v. 58, p. 102768, 2021. 135 CHAKRABORTY, N.; PATRA, G. Functional encryption for secured big data analytics. International Journal of Computer Applications, Foundation of Computer Science, v. 107, n. 16, 2014. 136 MENANDAS, J. J.; JOSHI, J. J. Secure big data processing through homomorphic encryption in cloud computing environments. 2016. 137 OKAMOTO, T.; UCHIYAMA, S. A new public-key cryptosystem as secure as factoring. In: Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding. [S.l.]: Springer, 1998. (Lecture Notes in Computer Science, v. 1403), p. 308–318. 138 CREEGER, M. The rise of fully homomorphic encryption: Often called the holy grail of cryptography, commercial fhe is near. Queue, Association for Computing Machinery, New York, NY, USA, v. 20, n. 4, p. 3960, sep 2022. ISSN 1542-7730. Disponível em: <https://doi.org/10.1145/3561800>. 139 GENTRY, C. A fully homomorphic encryption scheme. Tese (Doutorado), Stanford, CA, USA, 2009. AAI3382729. 140 GENTRY, C.; HALEVI, S. Implementing Gentry’s Fully-Homomorphic Encryption Scheme. 2010. Cryptology ePrint Archive, Paper 2010/520. <https://eprint.iacr.org/2010/520>. Disponível em: <https://eprint.iacr.org/2010/520>. 141 DIJK, M. V. et al. Fully homomorphic encryption over the integers. In: SPRINGER. Advances in Cryptology–EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. [S.l.], 2010. p. 24–43. 142 BRAKERSKI, Z.; VAIKUNTANATHAN, V. Efficient fully homomorphic encryption from (standard) lwe. SIAM Journal on computing, SIAM, v. 43, n. 2, p. 831–871, 2014. 143 FAN, J.; VERCAUTEREN, F. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, 2012. 144 BRAKERSKI, Z. Fully homomorphic encryption without modulus switching from classical gapsvp. In: SPRINGER. Annual cryptology conference. [S.l.], 2012. p. 868–886. 145 LóPEZ-ALT, A.; TROMER, E.; VAIKUNTANATHAN, V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing. New York, NY, USA: Association for Computing Machinery, 2012. (STOC ’12), p. 12191234. ISBN 9781450312455. Disponível em: <https://doi.org/10.1145/2213977.2214086>. 146 BOS, J. W. et al. Improved security for a ring-based fully homomorphic encryption scheme. In: SPRINGER. Cryptography and Coding: 14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings 14. [S.l.], 2013. p. 45–64. 147 ALBRECHT, M.; BAI, S.; DUCAS, L. A subfield lattice attack on overstretched NTRU assumptions: Cryptanalysis of some FHE and Graded Encoding Schemes. 2016. Cryptology ePrint Archive, Paper 2016/127. <https://eprint.iacr.org/2016/127>. Disponível em: <https: //eprint.iacr.org/2016/127>. 148 MITTAL, S.; RAMKUMAR, K. A retrospective study on ntru cryptosystem. In: AIP PUBLISHING. AIP Conference Proceedings. [S.l.], 2022. v. 2451, n. 1. 149 ALPERIN-SHERIFF, J.; PEIKERT, C. Practical Bootstrapping in Quasilinear Time. 2013. Cryptology ePrint Archive, Paper 2013/372. Disponível em: <https://eprint.iacr.org/2013/372>. 150 CHILLOTTI, I. et al. Faster Fully Homomorphic Encryption: Bootstrapping in less than 0.1 Seconds. 2016. Cryptology ePrint Archive, Paper 2016/870. <https://eprint.iacr.org/2016/870>. Disponível em: <https://eprint.iacr.org/2016/870>. 151 CHEON, J. H. et al. Homomorphic encryption for arithmetic of approximate numbers. In: SPRINGER. Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23. [S.l.], 2017. p. 409–437. 152 LI, B.; MICCIANCIO, D. On the security of homomorphic encryption on approximate numbers. In: SPRINGER. Annual International Conference on the Theory and Applications of Cryptographic Techniques. [S.l.], 2021. p. 648–677. 153 CHEON, J. H. et al. Bootstrapping for approximate homomorphic encryption. In: SPRINGER. Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I 37. [S.l.], 2018. p. 360–384. 154 KAO, M.-Y. Encyclopedia of algorithms. [S.l.]: Springer Science & Business Media, 2008. 155 SHOUP, V. NTL: A Library for doing Number Theory. <https://libntl.org/>. [Accessed 22-06-2024]. 156 HALEVI, S.; SHOUP, V. Algorithms in helib. In: SPRINGER. Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34. [S.l.], 2014. p. 554–571. 157 MICROSOFT SEAL (release 4.1). 2023. <https://github.com/Microsoft/SEAL>. Microsoft Research, Redmond, WA. 158 HEAAN. 2018. Online: <https://github.com/snucrypto/HEAAN>. 159 RNS-HEAAN. 2018. Online: <https://github.com/KyoohyungHan/FullRNS-HEAAN>. 160 FV-NFLLIB. 2016. Online: <https://github.com/CryptoExperts/FV-NFLlib>. 161 NFLLIB. 2016. Online: <https://github.com/quarkslab/NFLlib>. 162 MOUCHET, C. V. et al. Lattigo: A multiparty homomorphic encryption library in go. In: Proceedings of the 8th Workshop on Encrypted Computing and Applied Homomorphic Cryptography. [S.l.: s.n.], 2020. p. 64–70. 163 LATTIGO v5. 2023. Online: <https://github.com/tuneinsight/lattigo>. EPFL-LDS, Tune Insight SA. 164 CUFHE. 2018. Online: <https://github.com/vernamlab/cuFHE>. 165 NUFHE. 2019. Online: <https://github.com/nucypher/nufhe>. 166 DAI, W.; SUNAR, B. cuhe: A homomorphic encryption accelerator library. In: SPRINGER. Cryptography and Information Security in the Balkans: Second International Conference, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Revised Selected Papers 2. [S.l.], 2016. p. 169–186. 167 TFHE. 2021. Online: <https://github.com/tfhe/tfhe>. 168 FHEW. 2017. Online: <https://github.com/lducas/FHEW>. 169 ZAMA. Zama Concrete: Fully Homomorphic Encryption Compiler. 2022. <https://github.com/ zama-ai/concrete>. 170 CHILLOTTI, I. et al. Concrete: Concrete operates on ciphertexts rapidly by extending tfhe. In: WAHC 2020-8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. [S.l.: s.n.], 2020. 171 PALISADE Lattice Cryptography Library (release 1.11.5). 2021. <https://palisade-crypto.org/>. 172 BADAWI, A. A. et al. Openfhe: Open-source fully homomorphic encryption library. In: Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. [S.l.: s.n.], 2022. p. 53–63. 173 HELIB. <https://github.com/homenc/HElib>. [Accessed 22-06-2024]. 174 ARCHER, D. W. et al. Ramparts: A programmer-friendly system for building homomorphic encryption applications. In: Proceedings of the 7th acm workshop on encrypted computing & applied homomorphic cryptography. [S.l.: s.n.], 2019. p. 57–68. 175 GORANTALA, S. et al. A General Purpose Transpiler for Fully Homomorphic Encryption. 2021. Cryptology ePrint Archive, Paper 2021/811. <https://eprint.iacr.org/2021/811>. Disponível em: <https://eprint.iacr.org/2021/811>. 176 CHIELLE, E. et al. E3: A Framework for Compiling C++ Programs with Encrypted Operands. 2018. Cryptology ePrint Archive, Paper 2018/1013. <https://eprint.iacr.org/2018/1013>. Disponível em: <https://eprint.iacr.org/2018/1013>. 177 COPPOLINO, L. et al. Vise: Combining intel sgx and homomorphic encryption for cloud industrial control systems. IEEE Transactions on Computers, IEEE, v. 70, n. 5, p. 711–724, 2020. 178 NIST Announces First Four Quantum-Resistant Cryptographic Al-gorithms. 2022. <https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms>. [Accessed 23-06-2024]. 179 DAM, D.-T. et al. A survey of post-quantum cryptography: Start of a new race. Cryptography, MDPI, v. 7, n. 3, p. 40, 2023. 180 DAS, L.; AHUJA, L.; PANDEY, A. Existing spam filtering methods considering different technique: A review. In: IEEE. 2021 International Conference on Technological Advancements and Innovations (ICTAI). [S.l.], 2021. p. 515–520. 181 JÁÑEZ-MARTINO, F. et al. A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artificial Intelligence Review, Springer, v. 56, n. 2, p. 1145–1173, 2023. 182 KARIM, A. et al. A comprehensive survey for intelligent spam email detection. Ieee Access, IEEE, v. 7, p. 168261–168295, 2019. 183 SHEU, J.-J. et al. An efficient incremental learning mechanism for tracking concept drift in spam filtering. PloS one, Public Library of Science San Francisco, CA USA, v. 12, n. 2, p. e0171518, 2017. 184 ASIRI, S. et al. A survey of intelligent detection designs of html url phishing attacks. IEEE Access, IEEE, v. 11, p. 6421–6443, 2023. 185 JAMAL, S.; WIMMER, H.; SARKER, I. H. An improved transformer-based model for detecting phishing, spam and ham emails: A large language model approach. Security and Privacy, Wiley Online Library, p. e402, 2024. 186 PATHAK, M. A.; SHARIFI, M.; RAJ, B. Privacy preserving spam filtering. arXiv preprint arXiv:1102.4021, 2011. 187 YAO, A. C. Protocols for secure computations. In: IEEE. 23rd annual symposium on foundations of computer science (sfcs 1982). [S.l.], 1982. p. 160–164. 188 KHEDR, A.; GULAK, G.; VAIKUNTANATHAN, V. Shield: scalable homomorphic implementation of encrypted data-classifiers. IEEE Transactions on Computers, IEEE, v. 65, n. 9, p. 2848–2858, 2015. 189 JAISWAL, S.; PATEL, S. C.; SINGH, R. S. Privacy preserving spam email filtering based on somewhat homomorphic using functional encryption. In: SPRINGER. Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. [S.l.], 2016. p. 579–585. 190 DEMERTZIS, I. et al. i-seal 2: Identifying spam email with seal. Protecting Privacy through Homomorphic Encryption, Springer, p. 129–132, 2021. 191 NGUYEN, T. et al. Privacy-preserving spam filtering using homomorphic and functional encryption. Computer Communications, Elsevier, v. 197, p. 230–241, 2023. 192 SAMARDZIC, N. et al. Craterlake: a hardware accelerator for efficient unbounded computation on encrypted data. In: Proceedings of the 49th Annual International Symposium on Computer Architecture. New York, NY, USA: Association for Computing Machinery, 2022. (ISCA ’22), p. 173187. ISBN 9781450386104. Disponível em: <https://doi.org/10.1145/3470496.3527393>. 193 SAMARDZIC, N. et al. F1: A fast and programmable accelerator for fully homomorphic encryption. In: MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. New York, NY, USA: Association for Computing Machinery, 2021. (MICRO ’21), p. 238252. ISBN 9781450385572. Disponível em: <https://doi.org/10.1145/3466752.3480070>. 194 SHEA, R. et al. Cloud gaming: architecture and performance. IEEE Network, v. 27, n. 4, p. 16–21, 2013. 195 GALLAGHER, S. et al. Phishing and social engineering in the age of llms. In: Large Language Models in Cybersecurity: Threats, Exposure and Mitigation. [S.l.]: Springer Nature Switzerland Cham, 2024. p. 81–86. 196 KORYCKI, Ł.; KRAWCZYK, B. Adversarial concept drift detection under poisoning attacks for robust data stream mining. Machine Learning, Springer, v. 112, n. 10, p. 4013–4048, 2023. 197 METSIS, V.; ANDROUTSOPOULOS, I.; PALIOURAS, G. Spam filtering with naive bayes-which naive bayes? In: MOUNTAIN VIEW, CA. CEAS. [S.l.], 2006. v. 17, p. 28–69. 198 YAN, L. Workload characterization of spam email filtering systems. International Journal of Network Security and Its Applications, v. 2, 01 2010. 199 WHAT Is Anti-Spam? How Anti-Spam Works and Eval-uating Solutions. <https://perception-point.io/guides/email-security/what-is-anti-spam-how-anti-spam-works-and-how-to-evaluate-solutions/>. [Accessed 22-09-2024]. 200 NATIONS, U. UN Secretariat adopts climate action plan | Department of Manage-ment Strategy, Policy and Compliance. 2019. <https://www.un.org/management/news/ un-secretariat-adopts-climate-action-plan>. [Accessed 22-09-2024].
ResumoThe general adoption of cloud computing resulted in frequent security incidents, including data breaches in both the public and private sectors. Cloud service providers operate without transparency, fail to comply with regulations, and exploit private data for targeted advertising and training artificial intelligence models. The major tech companies have also been found to collaborate with intelligence agencies to illegally surveil individuals and governments by sharing private data, such as email communications. This study analyses the feasibility of Fully Homomorphic Encryption (FHE) as a solution to these security and privacy concerns, focusing on spam detection and email providers as representative subjects in the universe of outsourced computations on users’ private data. FHE maintains data privacy by enabling computations while the data is still encrypted, but it demands substantial computing and memory resources. The development of FHE-based applications is complex, requiring advanced knowledge of mathematical and cryptographic concepts. This work assesses the feasibility of FHE through experiments in spam detection by implementing Fully Homomorphic Encryption Spam Detector (FHE-SD), an application using the Concrete-ML libraries, which abstracts the complexity of FHE and simplifies its adoption. The experimental environment is a device with limited hardware resources, chosen to test if FHE can function without specialized hardware. For meaningful results, FHE-SD supports spam detection using machine learning algorithms, which are commonly used for spam detection. Four machine learning models are implemented in FHE-SD, in their FHE and on-clear versions, enabling various metrics and performance comparisons against traditional approaches.
CitaçãoPinto, A. R. (2024). Perspectives on the Feasibility and Adoption of Fully Homomorphic Encryption - A Fully Homomorphic Encryption Application on Spam Detection with Machine Learning Models. Instituto Superior Técnico.
Identificador ISNI0000 0004 1794 1114
URL da página da instituiçãohttps://tecnico.ulisboa.pt/
Identificador ROR03db2by73
URIhttps://deposita.ibict.br/handle/deposita/836
Publicação originalhttps://scholar.tecnico.ulisboa.pt/records/iAaA4G3H7Wz7loLNKUfnTKY33xylUdnQbv3O
Identificador WikidataQ1636837
Área de conhecimento CNPqCiências exatas e da terra
IdiomaInglês
InstituiçãoInstituto Superior Técnico da Universidade de Lisboa
PaísPortugal
Grau do cursoMestrado
Departamento do cursoMatemática
Nome do cursoMestrado Bolonha em Segurança de Informação e Direito no Ciberespaço
Tipo do cursoAcadêmico
Natureza jurídica da instituiçãoInstituição pública
Nome do programa de pós-graduaçãoMestrado Bolonha em Segurança de Informação e Direito no Ciberespaço
Tipo da instituiçãoUniversidade
Tipo de acessoAcesso aberto
Palavra ChaveFully Homomorphic Encryption
Palavra ChaveMachine Learning
Palavra ChaveSpam Detection
Palavra ChavePerformance
Palavra ChavePrivacy
Palavra ChaveSecurity
Palavra chave em outro idiomaCriptografia Completamente Homomórfica
Palavra chave em outro idiomaAprendizado de Máquina
Palavra chave em outro idiomaDetecção de Spam
Palavra chave em outro idiomaDesempenho
Palavra chave em outro idiomaPrivacidade
Palavra chave em outro idiomaSegurança
TítuloPerspectives on the Feasibility and Adoption of Fully Homomorphic Encryption - A Fully Homomorphic Encryption Application on Spam Detection with Machine Learning Models
Titúlo AlternativoPerspectivas sobre a Viabilidade e Adoção da Criptografia Totalmente Homomórfica - Uma aplicação da Criptografia Totalmente Homomórfica na Detecção de Spam com Modelos de Aprendizado de Máquina
TipomasterThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Perspectives_on_the_Feasibility_and_Adoption_of_Fully_Homomorphic_Encryption_Adriano_Pinto.pdf
Tamanho:
4.12 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.41 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções