Use este identificador para citar ou linkar para este item: https://deposita.ibict.br/handle/deposita/385
Tipo do documento: mastherThesis
Título: Espalhamento de pacotes de ondas em canais quânticos formados por semicondutores porosos
Título(s) alternativo(s): Scattering of wave packets in quantum channels formed by porous semiconductors
Autor: Lopes, Daniel 
Orientador: Pereira, Teldo
Primeiro coorientador: Sousa, Ariel
Primeiro membro da banca: Terezio, Eralci
Segundo membro da banca: Sousa, Jeanlex
Terceiro membro da banca: Costa, Diego
Resumo: Desordem em materiais heteroestruturados semicondutores experimentalmente bidimensionais (2D) é inevitável, o que pode ser originado de impurezas carregadas, vacâncias ou substituição atômica. Numerosos fenômenos excitantes surgem em materiais quânticos desordenados, como por exemplo a transição metal-isolante que pode ser explicada pelo efeito de localização de Anderson. Para propriedades de transporte, um sistema 2D com desordem potencial pode exibir transições difusão-balística e localização-deslocalização ao diminuir (manter fixo) o tamanho do sistema para uma desordem fixa (crescente). A presença de porosidades em materiais semicondutores, denominados materiais porosos, pode ser aproveitada para propor novos dispositivos para aplicações, como por exemplo guias de onda. Para o estudo dos estados eletrônicos para um sistema quântico (poço) poroso, feito de InAlAs/InGaAs, se faz necessário a solução numérica da equação de Schrödinger independente do tempo na aproximação da massa efetiva com a técnica de diferenças finitas. No contexto das propriedades de transporte eletrônico e materiais porosos, uma descrição teórica adequada e didática é baseada na propagação de pacotes de ondas. Assim, investiga-se a dinâmica do pacote de ondas viajando através de um canal semicondutor poroso com os defeitos sendo simulados por uma região de espalhamento desordenado produzido por potenciais de obstrução. O referencial teórico baseia-se na técnica de split-operator para resolver a equação de Schrödinger dependente do tempo dentro da aproximação da massa efetiva. Na simulação, considera-se o canal semicondutor feito por InGaAs com largura de 100 Å, crescimento em substrato de InAlAs, e os porosos são tomados com simetria circular e diferentes densidades. Os resultados para os coeficientes de probabilidade, reflexão e transmissão de corrente são analisados para diferentes: valores iniciais de energia cinética do pacote de ondas gaussianas, densidades porosas desordenadas, aleatoriedade porosa. Mostramos uma transição inter-sub-bandas fortemente dependentes da configuração da região de espalhamento desordenado.
Abstract: Disorder in experimentally two-dimensional (2D) heterostructured semiconductor materials is inevitable, which can originate from charged impurities, vacancies or atomic substitution. Numerous exciting phenomena arise in disordered quantum materials, such as the metal-insulator transition which can be explained by the Anderson localization effect. For transport properties, a 2D system with potential disorder can exhibit diffusion-ballistic and location-dislocation transitions by decreasing (holding fixed) the size of the system for a fixed (increasing) disorder. The presence of porosities in semiconductor materials, called porous materials, can be used to propose new devices for applications, such as waveguides. For the study of the electronic states for a porous quantum system (well), made of InAlAs/InGaAs, it is necessary to numerically solve the time-independent Schrödinger equation in the approximation of the effective mass with the finite difference technique. In the context of electronic transport properties and porous materials, an adequate theoretical and didactic description is based on the propagation of wave packets. Thus, we investigate the dynamics of the wave packet traveling through a porous semiconductor channel with the defects being simulated by a disordered scattering region produced by obstruction potentials. The theoretical framework is based on the split-operator technique to solve the time-dependent Schrödinger equation within the effective mass approximation. In the simulation, the semiconductor channel made by InGaAs with a width of 100 Å is considered, grown on InAlAs substrate, and the porous ones are taken with circular symmetry and different densities. The results for the probability, reflection and current transmission coefficients are analyzed for different: initial values of kinetic energy of the Gaussian wave packet, disordered pore densities, pore randomness. We show an intersub-band transition strongly dependent on the configuration of the disordered scattering region.
Palavras-chave: Semicondutores porosos
split-operator
Espalhamento quântico
Porous Semiconductors
split-operator
Quantum Scattering
Área(s) do conhecimento: Fisica da Materia Condensada: Teórica e Experimental
Idioma: por
País: Brasil
Instituição: Universidade Federal de Mato Grosso (UFMT)
Departamento: Instituto de Física
Programa: Programa de Pós-Graduação em Física (PPGF-IF/FMT)
Tipo de acesso: openAccess
URI: https://deposita.ibict.br/handle/deposita/385
Data de publicação: 2023
Aparece nas coleções:Centro-oeste

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação - Daniel - UFMT.pdfDissertação - Daniel - UFMT26,38 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Ferramentas do administrador